Simultaneous equations models
with truncated dependent variables:
a simultaneous tobit model

Robin C. Sickles and Peter Schmidt

In a recent paper Amemiya has discussed a
simultanecus equations model in which all of
the dependent variables are truncated [2]. This
model is an extension to the simultaneous
equations case of the Tobit model (Tohin [15];
Amemiya [1]). While it is certainly useful to
embed the Tobit model into a simultaneous
equations setting, it should be recognized that,
in empirical applications, truncated variables
are the exception rather than the rule. It is
possible to have a simultanecus equations
model with all of the dependent variables trun-
cated, but it is apt to be far more common to
have a model in which only one or two of the
dependent variables are truncated with the
other dependent variables being of the usual
kind. The purpose of this work is to carry out
an analysis of simultaneous equations modeis
when some, but not all, of the dependent vari-
ables are truncated. As it might be expected,
many of our results are similar to those of
Amemiya [2]; however, this similarity is not
always the case. Also developed here are some
new results for Amemiya’s case—all dependent
variables truncated—as well as our results.

In both the models of Amemiya [2] and in
the models of this work, it is the truncated
{observed) dependent variable which appears
on the right hand side of the structural equa-
tions. An alternative specification is to have the
untruncated {hypothetical) version of the de-
pendent variable on the right hand side of the
structural model. This alternative specification
has been analyzed by Nelson and Olson [13]
and Amemiya [3] and is related closely to work
of Heclkman [9]. The rather substantial differ-
ences between these alternative specifications
are explored in some detail.

To simplify the exposition, the second part
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will consider in detail the case of a two.
equation model with one dependent variably
truncated. The third section considers the gen
eral case. Our conclusions are presented in the
fourth section.

The two-equation case

The two-equation system considered by
Amemiya [2] can be written as follows:

(1) yiuf =vvat+ 8 %+ €y
Vof = vV + 82'%, + €

where

*wheny,* >0
2 = JYu W Y
@ Y {0 otherwise
Voo = { y 2t when yo* > 0.
# 0 otherwise

Here x, is a K X 1 vector of exogenous vari
ables; 8, and 8, are K x 1 vectors of coeffi-
cients; and vy, and v, are scalars. One observes
¥y and y,, but not y,* and y,*.

The system to be dealt with in this article is
the same except that y, is not truncated. Thus,
one has

3By yif =vywye+ 8%, + €1t

Yo = ¥aV 10+ 8% + €5
where

* when y,* > 0.
4 R AT Yt
@ yu {O otherwise

Here one observes y, and v, but not y, .

It should be stressed at this point that it is the
observed variable y,; which appears on the
right hand side of the second structural equa
tion in (3), not the unobserved (hypotheticall
variable y,*. This distinction is important. Fof
example, Nelson and Qlson [13] and
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amemiya [3] have considered the model

(5) Yu* = ¥yae t 8% + €5y

Yar=7Yaoy 1t + 82'x¢ + €y

plus equation (4). As one will see, this model
differs from that in (3) in several important
ways. First, model (5) has a single reduced
form which easily is estimated; while model (3)
has two reduced forms which are not estimated
easily. Second, the conditions for identification
of the two models are quite different. Third, in
model (3) the internal consistency of the model
requires certain restrictions on the parameters
which s not true in mode! (5).

which model is more reasonable really de-
pends on the economic application. In some
cases there actually may be a variable y,.*,
with an obvious interpretation, which is trun-
cated only by limits in observation. Then
model (5) may be preferred. On the other
hand, in other cases, y,* may be an entirely
hypothetical variable with no obvious interpre-
tationt in which case model {3) may be pre-
ferred. With these preliminaries out of the
way, one now returns to consideration of our
model as given in (3) and (4). Let one partition
this set of observations into those sets for which
the truncation is effective and those for which
it is not

6 t,={tlyn>0}={tly,* > 0}
= {t|truncation is
effective};
= {tlyn =0} ={t|lyn* < 0}
= {tltruncation is
effective}.

Then, one notes that for tet, the reduced form
of the model is

(7) y.* = 1—'—1‘— (8, + y.185'}x,

=YYz

i
+ T~ vms (€1 + yi€2d

= —1— (82" + vy28,/ &,
Y1Y¥z

1 = ')’1‘)’2('}‘26” €39
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while for tet, the reduced form is
(8) yyu*=1(8 + v82 ¢ + (€5, + yi€20

Yor= 82’ t+ €sr

The reduced form expression for v,* in (8)
obtains when y,* < 0; that is, when (5, +
Yidd %, + (€ + viead = 0. One sees that (5, +
v8a'x, + ey + €2 determines the sign of
yit- When it is negative, y,* is negative; and
this reduced form expression is consistent with
(8). Conversely, when (8, + y82'%; + (e, +
V€2 Is positive, v * must be positive. How-
ever, this is consistent with the expression for
vyt in (7} if, and only if, 1 — vy, > 0.

One has found that a necessary condition for
the existence of our model, as given in (3) and
{4), is 1 — vy, > 0. This finding is identical to
the condition given by Amemiya [2, p. 1008]
for the existence of his model, as given by (1)
and (2), It will be seen later that this equivalence
of Amemiya’s condition and ours does not
always hold for larger models—as long as not all
variables are truncated.

It is easy to contrast this condition with the
reduced form of the mode! given by equations
(5) and {4). For this model the reduced form in
{7) holds for all t. No restrictions are needed for
the internal consistency of the model. On the
other hand, one can solve for the structural
parameters in (5) from the reduced form pa-
rameters in (7) only if the usual rank and order
conditions for identification are satisfied.

it also should be pointed out that, when the
reduced form (7) is derived from the model (5),
it is essentially identical to the model of
Heckman [9, p. 476], though with a slightly
different truncation rule. The first equation in
(7) can be estimated consistently by Tobit
analysis, while the second can be estimated
consistently by least squares. Consistent esti-
mates of the structural parameters then can be
found by the analogue of indirect least squares
(if they are identified). Alternatively, consistent
and asymptolically efficient estimates can be
substained via the method of maximum likeli-
hood.

Now the authors return to their two-equation
model given in (3) and (4) with its two reduced
forms (7) and (8). Since each reduced form holds
only for a (nonrandom) subset of the observa-
tions, estimation of the reduced forms is not
trivial. The authors demonstrate that one can
obtain consistent estimates of the reduced form
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(7). If the usual rank and order conditions hold,
these can be transformed into consistent esti-
mates of the structural parameters; therefore,
these may be of interest as a computationally
simple way of oblaining consistent estimates of
the structural parameters. Also it will be shown
that one can estimate enough additional pa-
rameters of the reduced form (8) to guarantee
the identification of the second structural equa-
tion in {3); one exclusion restriciion on the first
structural equation suffices to identify the
model.

The reduced form (7} is considered now in
which the authors wish to estimate using the
observations for which y4, > Q (tet,, as defined
in (6)). Essentially the same problem is treated
by Amemiya [2] for his model in which both
dependent variables are truncated and in
which one needs only to make the necessary
modifications in his estimator.

To do so, rewrite equation (7) as

(9) yu=m X+ wyy

Yoe= Ta'Xe + Wy

where
1
(10} w,= (8, + v¥1839
ERIEEZ &
— 1
= g {82 + ¥28)
- Y1¥z
and
(11} wu= T_m (€10 + yi€2)
= Y1V
_ 1
Wor = 1—”% {ys€1e T €2)
- Y1Y2

Let the distribution of (w,, wsaj’, not con-
ditional upon tet,, be N{0, Z) where

3 = [0'11 0'12:|
T2 Oz
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The basic equations which are derived are 5’
follows:

g -1/
(12) y.2= |—0'110'22 — T2 1
T 22
YieXe
T o7
m,— T2
Fag
Y1eYae
T2
T 22 _j
* 7y
—_ g s
(13} yaul= 011022 — T2 1
oy
YarXt
™
m,— T2
On YieYoe
T2
|_ o1
+ N

where E(n,9 = E(n,) = 0.

The set of equations (12) and (13) is similar
to equation (2.15) of Amemiya [2, p. 1003]. As
in Amemiya’s case, ordinary least squares is
inappropriate because of the correlation be-
tween the #'s and the y's. However, one can
use the instrumental variables method to get
consistent estimates. The required instruments
can be formed by regressing ., and y,, on x
and higher powers of x, to form y,, and §, an¢
then by replacing v, and y 5 on the right hand
sides of (12) and {13) by these predicted values.
The resulting instrumental variables estimators
are consistent estimators of the parameters in
{(12) and (13). Finally, from these estimates one
can solve for estimates of the reduced form
parameters (m,, g, 11, Tz, Tag).!

One has arrived at consistent estimates of the
reduced form parameters corresponding to the
set of observations for which y;, > 0. The
relationship of these parameters to the original
structural parameters is evident from equation
{7) which gives the reduced form for this set 0:f
observations, As in the usual simultaneous

]

1. In some cases, variables not in the model could be used
as instruments; however, it is difficult to make any general
statement of where these variables would come from.
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equations case, one can solve for the structural
arameters from the re:cx_‘uceq form parameters
if the usual rank co'ndmon is satisfled.. (In the
present context, this solution essentizlly re-
quires that at least one efement of both &, and
5, be known a priori to equal zerc.) It should
be stressed that in the present model, unlike
the usual simultaneous equations modei, this
condition is not necessary for identification of
the structural parameters; it is only necessary
for the identification of the structural parame-
ters from only the set of observations for which
. > 0. But, in any case, if the usual rank
condition holds, one has arrived at a sort of
indirect least squares method of getting consis-
tent estimates of the structural parameters.
These indirect least squares estimates are
consistent but inefficient, (Clearly, one cannot
hope to get efficient estimates when one re-
stricts his attention to only a subset of the
observations.) Furthermore, their asymptotic
distribution is not known. Their main useful-
ness is as starting values for an iterative scheme
to calculate the maximum likelihood estimates
to be discussed shortly. Alternatively, one can
rely on the well-known result that if one starts
with any cansistent estimate of the parameters,
the result of a single Newton-Raphson iteration
on the [og-likelihood function is consistent and
asymptotically efficient, (This result is just the
so-called “method of scoring” or “linearized
maximum [ikelthood method’”—see Rothen-
berg and Leenders [14] or Dhrymes [4, 5. Use
of these initial consistent estimates can help to
cut the computational expense of finding
asymptotically efficient estimates.
) One can, if he wishes, use these initial con-
sistent estimates in one other way. Proceeding
along the lines of Amemiya [2, p. 1011] and
Heckman [9, pp. 479-80], one can write

(4) yy=myx, + U]xﬂﬁ—lx_f)_ +ey
Fl— /%)

You= 'ﬂ'z'X¢+ U.giﬂ.—]—foJ— + eg
F( - Tl'lX;)

é‘;\:::lere Ele,) = Efey) = 0 (conditional on tet,)
g Wg;ere fand F are, respectively, the density
initialc of N(Q, @1). One then can use our
5 consistent estimates 7, and &, in place
™M and oy to form the regressor flm,'x,)/
o 7iX.) and to apply ordinary least squares
' Beneralized least squares since e,, and ey,
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are heteroskedastic). Amemiya[2, p. 1005]
claims that the substitution of #, and &, for 7,
and o, does not affect the asymptotic distribu-
tion of the estimates. However, this claim is not
correct, as shown by Heckman [10]. The correct
asymptotic distribution unfartunately depends
on the asymptotic distribution of the initial con-
sistent estimate which is unknown in this case.
As a result there is no good reason to prefer
these estimates to the initial consistent estimates
themselves,

It also may be worth pointing out that in
some cases one may have available only the
observations for which y, > 0. (That is, one
may not have collected the observations for
tets.) For one such example, see Hausman and
Wise [7] who deal with a sample truncation
arising in the New Jersey negative income tax
experiment. The simple consistent estimates
described here still can be used and indeed
can seem more reasonable in this case since
there are no observations in t, being ignored.
Of course, they still will not be as efficient as
the maximum likelihood estimates.

Now the discussion of the two equation case is
continued by returning to the question of the
identification of the structural parameters. It
has been seen that there are two different re-
duced forms for the model corresponding to
the sets of observations for which the trunca-
tion on y, is and is not effective; these are
given in equations (7) and (8). The estimation
of the reduced form has been discussed in (7)
from the set of observations for which the
truncation is not effective; and it has been
noted that the reduced form parameters in (7)
imply unigue values for the structural parame-
ters if, and only if, the usual rank condition
holds. However, this condition is not necessary
for identification of the structural parameters, at
least for the second structural equations. The
reason is that it ignores the information avail-
able in the reduced form given in equation
(8}—that is, the information in the set of obser-
vations for which the truncation is effective.

To be more precise, one notes that one can
estimate from the observations for which the
first reduced form, equation (7, is effective, the
following parameters:

(15) wy=— 1

T = v17:

(8, + 7189

Te = —1 (8 + va8))

— Y1Yz
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— 1 It may seem strange to some readers that th,'
o= ——(Q,,+ 2y, 8 at the
TS v @1y + 2y, 8y second structural equation is identified withay
+v,20,,) any restrictions. To see why this is the Case,
Y1222 consider a linear combination of the two Struc.
] tural equations in {3): a - first equation + b .
T = ST [0 + second equation implies
1r2
(1 + vyy22i2 + v Q2] ay,* + bys = ayy, + ad,'x + ae,

1 + b‘)’zyl + ng'X + beg.

Tog= ——— 3 {y2"Qn ) ) .

1 — viys) Solving for v, gives

+ 29205 + £y9).

In Appendix B it is shown that from the ob-
servations for which the second reduced form
is effective, one also can estimate the following
parameters:

{(16) ¥,=25,
B__: -(012+ !1022)_
T = %1y

The first equation of (16) clearly shows that §,
is identified. Also, the second equation of (16)
can be rewritten by observing that

Diz= —Y2011 — V1T + (1 + vy 2
Qgs = Y2011 + Tas — 2Ys012

With these substitutions one finds

B =01 — 02

Since B is estimabie and so are oy, and o,
one can solve for v, as follows:

(17)  y2=(B + ooy,

It is seen that one can identify 8, and y,, the
parameters of the second structural equation in
(3), without any restrictions on that egquation.
However, the first structural equation in (3) is
identified only if it satisfies one exclusion
restriction—that is, if the usual order and rank
conditions for that equation hold. That this
condition is sufficient for identification of the
first structural equation is clear from the usual
results for linear systems. To see that it is
necessary, one can try to solve (15) and (16) for
the structural parameters (v, yg, 84, 82, Q11, £ 12,
Y5 in terms of estimable quantities (m, s
Tiy T Gz Yo B. This solving is done in
Appendix B for the simple case of K = 1.

y2=b‘—1—a‘)’1{b-)'ZYI + (ad, + bS,_’)x

+ (ae, + bey) — ‘ay,“}

This equation is distinguishable from the sec
ond structural equation of (3) because it con-
tains y * as a right-hand-side variable. Another
way of making the same point is to observe
that, for the set of chservations for which the
truncation is effective, y,;, does not appear in
the second equation (because it is zero). Intui-
tively, this is equivalent to one exclusion from
the second equation, for at least one set of
observations,

The authors will return to this point later
when they get to the general case. However,
they, at this peint, mention the relevance o
this argument to the model of Amemiya [2], &
given in equation (1), in which both depen-
dent variables are truncated. In this case both
structural equations are identified without any
exclusion restrictions. One way to see this
identification is to note that, if ane takes linear
combinations of the equations in (1) and solves
for y.*, this equation will include y,* as 2
right-hand-side variable, and conversely. Alter
natively, one can note that corresponding to
model (1) are four reduced forms, correspond
ing to the possible permutations of the two
truncations being or not being effective. For
each of the two reduced forms corresponding
to one truncation effective, one can estimate
parameters precisely analogous to those in {16
above, from which one can solve for the struc
tural parameters of one of the two structurd
equations.

Finally, the discussion of the two-equatiot
case is finished with a brief discussion o
maximum likelihood estimation. If one assumes
that the vectors (e, €)', t = 1,2, ..., T, ar
independently and identically distributed a$
N(0,9) and if one lets f{ ) denote the denstty
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runction of N(0,£2), then the likelihood function
is of the form

(18) L= t'n['“ - vyl — yiya
€l
= 81Xy Yoo — Ya¥u — O2'%x;)

[ = yi¥rae— 6%
w
félg[ f(El,. Yar — 52' xt)det

- %

This likelihood function can be maximized by
using @ numerical maximization program to
obtain the maximum likelihood estimates.
Asymptotic standard errors can be oblained
from the information matrix which in this case
is best obtained by numerical differentiation,
due to the complexity of the expressions for
first and second derivatives.

The maximum likelihood estimates are con-
sistent and asymptotically efficient. In particu-
lar, they are more efficient than the simple
consistent estimators discussed earlier. How-
ever, they are also more expensive to compute.
Even if the maximum likelihood estimates are
tc be computed, the simple consistent es-
timators make good starting values for the itera-
tive scheme. Also, as mentioned earlier, one
Newton-Raphson iteration is sufficient to ob-
tain asymptotically efficient estimates if consist-
ent starting values are used. Finally, the con-
sideration of the simple consistent estimators is
a step in verifying identifiability of the struc-
tural parameters which is clearly necessary be-
fore maximum likelihood is used.

The general case

Now the general case of a system of G equa-
tions in which the first S endogenous variables
are subject to truncation is discussed. As a
matter of notation, let the observable depen-
dent variables be denoted as

(19) Y=(Ys Yol

where

st[yl' yb ey YS]r YG-S=[YS+ 1r = = oy yG]-

The variables in Ys are those subject to
tfruncation, Define

(Zoj YS* = [yl*’ yzi’ R ys*]
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and define
(21)  Y*=[V Yesl.
Then,
yd ifyt >0
(22)  y;= Li=12,...,5;
0 ify# <0

and one can write the model as

23y Y* =Yl + XA + e

Here ¥ and Y* are (1xG) row vectors of en-
dogenous variables, as described above; X is a
{IxK} row vector of exogenous variables; € is a
{IxG) row vector of observations; and I” and A
are GxG and KxG matrices of coefficients, The
normalization rule is that the diagonal ele-
ments of I' are equal to zero.

As in the two-equation case, certain condi-

tions are necessary for the existence {i.e., inter-
nal consistency) of the model. Explicitly, these
are as follows.
Conditions for existence of the model. The
determinant of {{ — I') must have the same sign
as any principal minor of (| — I} involving at
least the last G=5 rows and columns. These
conditions will be illustrated now for the
three-equation case. One has

0 Yz Y13
24) I'= Yz 0 Y23
Va1 Yaz 0
L —Yiz2  TY13
andl =T = | —vyy 1 ~ Yy
~Yan TV se 1

One notes that if all three endogenous vari-
ables are subject to truncation—the case of
Amemiya [2]—then the conditions above are
that all principal minors of f — T be positive
which agrees with Amemiya’s condition [2, p.
10061, as of course it must.

The case in which only the first two en-
dogenous variables are truncated now is con-
sidered in some detail. The model is

(YI*r y2*r y3) = (YIJ Yz: Ya)r'+ X(Sh 82; 83)
+ (ell €g, 63)
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with T as given in {24) above. Note that there (25) if, and only if, the sign of D is the same as

are four subsamples:

t = {t|yu> 0,ya > 0}
ty = {t!Yu >0y = 0}
tg= {t\ht“_‘ 0, ¥e > 0}
ty={tlyu= 0,y = 0}.
For tet., the reduced form equations (anal-

ogous to those in equation (7) of the second
section) for y,* and y,* are

@5) yit =& X801 = yasvan)
+ Beya1 + Yaryad
+ 8dyar + Yaysd]
+ [ed1 = Vogys) + €2
(Va1 + Varyed + €dya + Yiyadl}

Yot = % {X[8 ¥z + Yasvd
+ 851 —varyid + 83

{yse+ vary2] + ledyie + vadyd

+ {1 — yaryie + €
(ys + 'J’aﬂ’u)]}.

where D = |/ — T'|. For tet, the reduced
form equations for y* and y,* are

26) ypr= 2 o, X8 + B2y
+ [61 + 53’)’31]}

yo* = Di;{x[al('}’m + Yasy1d
+ 81 — yaryid) + 8;
(yaa + varyid] + le,

(Y12 + Yar¥is) + €x(1

+ e3(ya + 731’)’12)]},

— Ys1V13)

where

De=1~ viya

Now, the expression for y,* in (26} obtains
when y,* < 0 (and y;* > 0). When it is
positive, it must be the case that y,* > 0. But
this is consistent with the expression for y;* in
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the sign of D,.

Similarly, for tety the reduced form equations

for y* and y,* are

(27) y&*= g{xwlu — Yagya) + B
1

(Y21 +Ya1¥2d + Salyat yoryal]

+ [e)1 — YVag¥al + €

(a1 + Yaryad + €slys; + Yarysl)

yot = — {X[az + 85ya]
+ [eZ + €sysl)

where D, = 1 ~ vaqya,. Comparing the expres-

sions for y,* in (25) and (27) leads to the,

conclusion that D and D, must have the same
signs.

Finally, the tet,, the reduced form equations
fory* and y,*, are

(28) yr= wD]—{XIal + Syyail
12

+ [e1+ egyal}

Yot = —{X[Sz + Bgys
+ [€2+ 53'}’32]}

where D, = 1. Comparing the expressions for
y* in (26) and (28) leads to the conclusion that
5 and D, must have the same sign; compar-
ing the expressions for y4 in {(27) and (28) leads
to the conclusion that D, and D, must have
the same sign. Since D ;; = 1 is clearly posmve,
it is concluded that D, D, and D, must be posi-
tive. However, one can draw no conclusion
about one of the principal minors of | — I,
1 — 3,72 can be of either sign.

if one looks at the case in which only the first
endogenous variable is subject to truncation,
then one can conclude only that D and Dy
have the same sign. One cannot even say
whether this sign is positive or negative which
is seen easily by the same line of reasoning as
in the case in which two variables are trun-
cated.

These examples are revealing because they
make clear the pattern for the general case of G
eguations with 5 variables subject to trunca-
tion. In this case there will be 25 reduced

forms, corresponding to all possible permuta-
tions of the events y; > O ory, = 0,i =

1, 2
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5. Each of these 2% reduced forms will
'h:w’e in the denominator of each equation a
different principal minor of ( - T); specifically,
it will be the principal minor involving the last
G-S rows and columns, plus all rows and
columns for which the corresponding y, is posi-
tive in that reduced form. Now, if one com-
pares the expressions for y¢* in any two re-
duced forms which agree on the classification
(positive versus zero) of all othery;(j /# i}, one
finds them to be identical except for the differ-
ent principal minors in the denominator. By the
same line of reasoning used above, one can
conclude that these principal minors must have
the same sign. Finally, by making all such
possible comparisons? one arrives at the con-
ditions for existence of the model as given
above.

Now the maximum likelihood estimation of
the model is turned to. Again, it is easier to
understand the general case if one first con-
siders a special case, so the special case of the
three-equation model with two variables sub-
ject to truncation is considered. Then one has

29 L= t'ﬂ;D fly e — Yai¥Yer — YalYse
€ty
— Xy Yor— Vi1 — Vs¥ae

— X82,Y3 — Y1i¥1e
Yo — XDy
(= Vi¥ar — Yo ae = X8
-lg,szf(er = YarYa — Xed1, €3 Y

—x3

= Yua¥u~— xra:;]dEg
L =¥z¥ae — ya¥se — X84

D
tety ljf(fh Yo~ YasYse—X(D2, Yar

—s

= YuaYu — X 83)de;

{— Ya¥ae — X}
- Dy
tety
-
(= 8agyar — X B2

ff(fu €2, Yar — X 83)dezde,.

D, D, D, and D,, are as defined above; and f
s the density function of N(0,Q), the distribu-
——

2. Actually, all possible comparisons don't have to be

Made; 2% comparisons will be sufficient if they are distinct
COmparisons,
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tion of the (structural) error terms. Note the
cbvious similarity between this expression and
the expression given in (17) for the case of two
equations and one variable subject to trunca-
tion.

In the general case of G equations with §
variables subject to truncation, one has 25 sub-
samples to consider; and the likelihood func-
tion is of the form

(30) L= 7 =g

i=1 el

(Yo - - -+ Ygd-

v Yst -

The function g, is the appropriate density or
probability function for cbservations in the i*h
subsample. If the i*® subsample has £, effective
truncations (i.e., £, y’s equal zero, and S-£;y's
are positive), then g, will be the appropriate £;
— dimensional integral of the density f of the
structural error terms. It will be multiplied by a
Jacabian which will equal the absolute value of
the principal minor of ({ — I') which includes
all rows and columns except those correspond-
ing to the E, effective truncations.?

The analysis of identification is fairly obvious
from the discussion in the second section. Re-
call that, in the case of the two equations, with
only the first dependent variahle truncated, the
second structural equation is identified without
any exclusion restrictions. The reason is that
linear combinations of the two equations
which give nonzero weight to the first equation
will contain y,* (the untruncated value of y ) as
a right-hand-side variable. Thus, the second
equation is identified with respect to the first.?
Since this is just a two-equation model, iden-
tification of the second equation with respect
to the first equation implies identification of the
second equation.

In the general case in which the first § vari-
ables are truncated {and the last G-S are not),
one has the analogous result that each of the
equations is identified with respect to each of
the first § equations. (This identification is ap-
parent since a linear combination of equations
giving nonzero weight to the i equation, for
any i < §, will contain y# which is not con-
tained in any of the structural equations except
the {®) The further conditions necessary for

3. This principal minor is the same one that appears in the
denominator of the reduced form expressions for the corre-
sponding subsample of observations.

4. For a discussion of identification of one equation with
respect to another, see Fisher [6, pp. 166 ff].
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identification (with respect to all equations)
then follow from the usual theory of identifica-
tion; see Fisher [6]. Of course, in the case of
Amemiya [3] where § = G (all variables trun-
cated), each equation is identified automati-
cally without any exclusions whatever.

Given the identification of the structural pa-
rameters, there is no conceptual difficulty in
obtaining maximum likelihood estimators or in
claiming the usual desirable asymptotic
properties for them. Of course, as the size of
the system (and particularly the number of
truncated variables) increases, the necessary
computations become increasingly difficult.

In principle, the simpler estimation proce-
dure given in the second section could be
generalized also which would involve finding
relationships between the moments of a
G-variate normal distribution with § trunca-
tions, which is a very difficult undertaking ex-
cept when G is rather small or when S equals
zero or G. This procedure remains an interest-
ing topic for further research.’

Finally, the reader is reminded that in our
model it is the observed (truncated) Y which
appears on the right hand side of the structural
equations—see equation (23). As it was done
in the two-equation case, the alternative speci-
fication having the untruncated Y* on the
right hand side could be considered. That is,
one could replace (23) by

BN Y=YT+XA+e

to get the model of the type analyzed by Nel-
son and Clson [13] and Amemiya [3]. In such
a model there wduld be a simple reduced
form,

Y¥=X{-T)1+e(f —T)7,

rather than the 25 different reduced forms
which (23) implies. These reduced form equa-
tions could be estimated easily by Tobit and
least squares, so that for this model simple
consistent estimates are available in the general
case, Also, no restrictions on the parameters
are necessary for the existence of this alterna-
tive model; though the usual order and rank
conditions are necessary for its identification. It
must be admitted, then, that in many respects
this alternative model is more convenient to

5. Such simple consistent estimators can be found in
Lee [12].
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work with than our model that has been pre.
sented here. However, it is clearly the case that
the choice between these models should be
made not on grounds of convenience but on
the basis of which better describes the reality
being modeled. The potential user will have to
decide this on a case by case basis.

Conclusions

This article has considered simultaneous equa-
tion models in which some of the dependent
variables are subject to a Tobit-type truncation.
The analysis is similar to that of Amermniya [2]
for the case in which all variables are subject
to such a fruncation, though the authors do
derive some new results on identification. They
have found conditions which are necessary for
the logical consistency of the model and have
derived the conditions for the model to be
identified. The model can be estimated by
maximum likelihood.

The special case of a two-eguation system
with one truncated variable has been con-
sidered in some detail. In this case, a computa-
tionally simple alternative estimation proce-
dure is derived as an alternative to maximum
likelihood. These estimates are consistent and
can be used as the starting point for an efficient
two-step, Newton-Raphson procedure.
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APPENDIX A

In this Appendix it is shown how one can
estimate the parameters given in (16). For tet,,
the reduced form is (omitting subscripts for
simplicity)

(A‘” yl* = ‘PI'X + \'4
Yo = ‘Pz'x + vq
where
(AZ} lpl = 81 + '}'162 = (1 - ‘y{ydﬂ'l
V,= 3,
vi= € + yea = (1 — yiyaw,
V= €

and where 7, and w, as defined in (12} and
{13). Also let ¢ be the covariance matrix of v =
vy, vy, so that

(A3) by=0Q, + 2‘}'1012 + 'leﬂzz
big = '}’1922 + QO

by = -sz .
The problem is that one does not observe y*,
and y * = O for all observations here.

One considers the singly truncated bivariate
hormal distribution with density

’-};g*{v,, vy ifv, < b,

0 ing ?bl
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where g* is the density of N{0,¢), b, is an
arbitrary scalar, and

b

-

-

f g*v, va)dvaedy,

It is easy to show that

= — uf*(“bi}
(Ad) Elv) L__F*(_bl)

where

f*c) =

1 -1
e ' c?
V27 ¢ P I:de ]
Fro) = [ vy di=v) = P

The density f* and cdf F* are similar to f and
F in equation (14) but are for the N (0, ¢,,) dis-
tribution rather than for N (0, o).

Withb, = —W¥/x and v,= v, — ¥.'x, one has

= W,y — P (¥ix)
(AS) Elys= Wyx — S ma.

One cannot use this directly as one has not
yet identified ¥, or ¢. But note that

*(F,'x)
=————,—]—— exp [:_—T—(‘l’.'x}z]
217 (i)“ 2¢Il
= 1 ! exp [ —1 ('n','x)z]
T— yrye Vo, 2oy
= __1__.. f{ﬂ'l'xj
1 = vrye

and similarly F*(¥,'x) = F(mr,'x). Therefore,

— ' {(17 ,X)
E( = '\1}' X — ¢12 1
vy 2 1 — y,¥s Flw'x)

and

Y2 = ‘lex + B ————-rf(ﬂ-l'x) + @

A6
(Ae) Flmx)




i
),
Ly
il
i
mwﬂ

1
Iy

uunﬂ
I|h||ﬁ
||”wi|lﬂ
rlUIH‘
|..U.I

|]lw

\Il{

.\Fu
A

i
I
f'wﬂ
‘F"H ||

|||u1|
Iluﬂ

.u“

""J‘“ 1

I

VvOL 31 NO. 1
where
B=—¢p/1 —viyd andE@) =

One does not observe the regressor flar,'x)/
F(m,'x) because it involves the parameters
and o,;. However, one can estimate these
parameters consistently from the other reduced
form, as previously seen, so as to form a con-
sistent estimate of f{m,'x)/F{s,'x). Ordinary least
squares applied to (A6), with this substitution,
then vields consistent estimates of ¥, and 8.

Appendix B

In this Appendix a solution is attempted for
the structural“parameters in terms of the esti-
mable reduced form parameters for the special
case of a single explanatory variable (K = 1).

The basic equations are as given in equa-
tions (15) and (16} of the text which for your
convenience are recopied here:

(B1) = -1—:'1},—{;—2- (8 + v.82)
(B2) my= 1 (5, + 53,

1= yy:
(B3) o= -(T-:l'y_‘y_z)i (€2 + 29,0y

1
+ 712922]

B4 -
(B4) Ty = a = '}’1')"2)2 [720'11

+ (1 + yiy€dip + yiLlal

(B5) og= m [y%2y; + 2y,
+ Q]

(B6) W¥,=38,

B p=—" (@ = 7i0a)

The problem is to solve for 8, 8y Y1 Y2 Tuv
o1z and ¢y,

Clearly, it is easy to solve for 8, from (B6é):
(B8) ,= WV,

Also, (B3), (B4) and (B5) are just a reflection of
the equation (in matrix form) 2 = [( — I)7''Q
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¢ — I)"*which impliesQ = ¢ —TVZ( —T), or

(B9) Q) =0y — 2y0p + Vil
(B10) 2= 1v01, = Y102z + (1 + yiydoy,
(B11) g = vy — 273002 + Ooa

This equation demonstrates the solution for
€} if one can solve for y, and y,.

Also, (B1) and (B2) can be solved for &, and
8, to get

(81 2) 61 =T T YT

8y =y — Yy, .
Since 8, has been solved for in (B8}, one can
solve now for y,:

(B13) o= - (m, — &,
™

Also (B12) will give the solution for 8, if one |

can solve for y,.

This solution leaves v, as the only parameter
still needed. One now substitutes (B10} and
(B11) into (B7) to get

(1= 7172 B=y0ou+ Y02
= (0 + yrydoe
+ 2¥Y0 12 — YOz
=yl — yiydou — (1

— yylon

= VYT 12
or

B=vy01 — 0O

which does not depend on ¥, So one cannot
solve for v,; therefore, neither can one solve
for &, 0},, or 04,

A similar perversity occurs if, as in the text,
one uses {B6) and (B7) to solve for 8; and vy,
and then attempts to solve (B1) and (B2) for
8, and ¥, Also, it can be mentioned that,
in addition to the parameters listed in (B1)}-
(B7), one also can estimate the variance of
vy (= €4, conditional on tet,, from the resid-
uals of the (estimable) second question of that
reduced form. However, this variance turns out
to equal

Qyy + (042 — Y20 1)O 1

which clearly doesn’t help in determining the
structural parameters of the first equation.
Finally, the reader can verify that taking K > 1
still does not help in identifying the first
structural equation.
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