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Abstract

While a substantial literature on structural break change point
analysis exists for univariate time series, research on large panel data
models has not been as extensive. In this paper, a novel method for
estimating panel models with multiple structural changes is proposed.
The breaks are allowed to occur at unknown points in time and may
affect the multivariate slope parameters individually. Our method is
related to the Haar wavelet technique; we adjust it according to the
structure of the observed variables in order to detect the change points
of the parameters consistently. We also develop methods to address
endogeneous regressors within our modeling framework. The asymp-
totic property of our estimator is established. In our application, we
examine the impact of algorithmic trading on standard measures of
market quality such as liquidity and volatility over a time period that
covers the financial meltdown that began in 2007. We are able to de-
tect jumps in regression slope parameters automatically without using
ad-hoc subsample selection criteria.
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1 Introduction

Panel datasets with large cross-sectional dimensions and large numbers of
time observations are becoming increasingly available due to the impressive
progress of information technology. Parallel progress has also occurred in the
econometric literature, by the development of new methods and techniques
for analyzing large panels. An important issue that has been addressed in
several contexts is the risk of neglecting structural breaks in the data gen-
erating process, especially when the observation period is large. Our paper
contributes to this literature by providing a general framework to estimate
panel models with multiple structural changes that occur at unknown points
in time and may affect the model parameters individually. We also develop
methods to address endogeneous regressors within our modeling framework.

Given a dependent variable Yit observed for i = 1, . . . , n individuals at
t = 1, . . . , T time points, we consider the model

Yit = µ+
P∑
p=1

Sp+1∑
j=1

Xit,pI
(
τj−1,p < t ≤ τj,p

)
βτj ,p + αi + θt + εit, (1)

where I(.) is the indicator function, Xit,p, p = 1, . . . , P , are explanatory
variables, αi is an individual specific effect, θt is a common time parameter,
and εit is an unobserved idiosyncratic term that may be correlated with one
or more explanatory variables. For each variable Xit,p, p = 1, . . . , P , the
corresponding slope parameter is piecewise constant with an unknown set
of jump points {τ0,p, τ1,p, . . . , τSp+1,p| τ0,p = 1 < τ1,p < . . . < τSp+1,p = T} ⊆
{1, . . . , T} for some unknown Sp ≥ 1.

In single time series, the available information is often not sufficient to
uncover the true dates of the structural breaks. Only the time fractions of
the break locations can be consistently estimated and tested; see, e.g., Aı̈t-
Sahalia and Jacod (2009), Bai (1997), Bai and Perron (1998, 2003), Carr
and Wu (2003), Li and Perron (2015), and Pesaran et al. (2011). In panel
data models, such a limitation can be alleviated since the cross-section di-
mension provides an important source of additional information. Besides
the virtue of improved statistical efficiency, the determination of the change
point locations can be of particular importance in many applications. In-
deed, estimating the number and locations of the structural breaks alleviates
concerns about ad-hoc subsample selection, enables interpretation of histor-
ical events that are not explicitly considered in the model, and avoids related
issues of statistical under- or over-parametrization.

One of the earliest contributions to the literature on testing for struc-
tural breaks in panel data is the work of Han and Park (1989). The authors
propose a multivariate version of the consum-test, which can be seen as a
direct extension of the univariate time series test proposed by Brown et al.
(1975). Qu and Perron (2007) extend the work of Bai and Perron (2003) and
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consider the problem of estimating, computing, and testing multiple struc-
tural changes that occur at unknown dates in linear multivariate regression
models. They propose a quasi-maximum likelihood method and likelihood
ratio-type statistics based on Gaussian errors. The method, however, re-
quires that the number of equations be fixed and does not consider the case
of large panel models with unobserved effects and possible endogenous re-
gressors. Based on the work of Andrews (1993), De Wachter and Tzavalis
(2012) propose a break testing procedure for dynamic panel data models
with exogenous or pre-determined regressors when n is large and T is fixed.
The method can be used to test for the presence of a structural break in
the slope parameters and/or in the unobserved fixed effects. However, their
assumptions allow only for the presence of a single break. Bai (2010) pro-
poses a framework to estimate the break in means and variances. He also
considers the case of one break and establishes consistency for both large
and fixed T . Kim (2014) extends the work of Bai (2010) to allow for the
presence of unobserved common factors in the model. Pauwels et al. (2012)
analyze the cases of a known and an unknown break date and propose a
Chow-type test allowing for the break to affect some, but not all, cross-
section units. Although the method concerns the one-break case, it requires
intensive computation to select the most likely individual breaks from all
possible sub-intervals when the break date is unknown. Qian and Su (2014)
propose a three step procedure. In a first step they use a ”näıve” estimator
of the slope parameter based on fits over the n individuals for every single
time point t. This is used to construct appropriate weights for the adaptive
Lasso procedure used in the second step. In a third step they then propose
a post Lasso procedure. An important point is that their theory requires
that the preliminary näıve estimators of the slope parameters are consistent
(otherwise the weights in the adaptive Lasso procedure may be completely
irregular). This of course will only work for large n. Their method does not
consider cases in which n is small and T is large.

Our work deals with the problem of multiple jump discontinuities in the
parameters of panel models without imposing restrictive assumptions on
the number, the location, and/or the aspect of the breaks. Our approach
is quite general and covers the most important situations encountered in
panel data analysis. The method can be applied to panel data with large
time span T and large cross-section dimension n and allows for T to be
very long compared to n. We also consider the classic case of panel data, in
which T is fixed and only n is large. The special structure of panel data as
well as the fact that the cross-section dimension n may be arbitrarily large
makes it difficult to justify a reliance on methods developed in time series
analysis (for fixed n). This also holds for tests proposed in this context1.

1Moreover, much of the time series literature on break points is based on the assumption
that the number of break points S is known (Li and Perron (2015) would appear to
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First of all any asymptotics T →∞ for fixed n is only interpretable if the
cross-section dimension n is quite small compared to T . If n is large, the
corresponding asymptotic expansion may not provide suitable approxima-
tions. When applying time series approaches another problem is the special
structure of panel data. Due to individual effects, error terms for identical
individuals are highly correlated and do not follow the usual assumptions
made in the time series context. A model naively based on differences does
not fit either, since then the jumping parameters βτj ,p and βτj−1,p, p = 1,
, . . . , P , simultaneously occur in the equation.

Our theoretical construct considers breaks in a two-way panel data model,
in which the unobserved heterogeneity is composed of additive individual
effects and time specific effects. We show that our method can also be ex-
tended to cover the case of panel models with unobserved heterogeneous
common factors as proposed by Ahn et al. (2001), Pesaran (2006), Bai
(2009), Kneip et al. (2012), and Bada and Kneip (2014). We are unaware
of other work that provides such a treatment at this level of generality. Our
estimation procedure is related to the Haar wavelet technique, which we
transform and adapt to the structure of the observed variables in order to
detect the location of the break points consistently. We propose a general
setup allowing for endogenous models such as dynamic panel models and/or
structural models with simultaneous panel equations. Consistency under
weak forms of dependency and heteroskedasticity in the idiosyncratic errors
is established and the convergence rate of our slope estimator is derived. To
consistently detect the jump locations and test for the statistical significance
of the breaks, we propose post-wavelet procedures. We prove that our final
estimator of the model parameters have the same asymptotic distribution as
the (infeasible) estimators that would be obtained if all jump locations were
exactly known a priori and thus possess the ”oracle property”. Our simula-
tions show that, in many configurations of the data, our method performs
very well even when the idiosyncratic errors are affected by weak forms of
serial-autocorrelation and/or heteroskedasticity.

Although our approach has some similarity to the likelihood based ap-
proach of Li and Perron (2015), it is not clear how their approach could be
implemented in a panel data context. That appears not to be the case with
the approach of Bai and Perron (1998, 2003), which could in principle also
be used for panel data. Indeed Bai and Perron are instructive in that they
can help to motivate our basic ideas. For a given number S of breakpoints,
the methods of Bai and Perron are based on comparing the local fits of each

be an exception). For given S the papers in this literature then propose an estimation
procedure, derive asymptotic results, and suggest suitable test procedures. An “estimate”
of S relies on sequential testing procedures. In contrast, our procedure does not require
any specification of S. It automatically provides an estimate Ŝ , and we are able to show
that with probability tending to 1 our procedure will (asymptotically) provide consistent
estimates of all jump locations.
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possible combination of S + 1 subintervals. Although the method in Bai
and Perron (1998) is computationally infeasible, the dynamic programming
approach in Bai and Perron (2003) requires O(T 2) fits of different subin-
tervals. Our approach is also based on local fitting of subintervals, using
Haar wavelet ideas, which only needs to determine local fits for T subinter-
vals. Another important advantage of our method over the methods of Bai
and Perron (1998, 2003), Qu and Perron (2007), and Qian and Su (2014)
is that the elements of the slope parameter vector are not forced to jump
simultaneously. Our method allows for the total number of jumps to be
the sum of Sp individual parameter jumps at some unknown τ1,p, . . . , τSp,p
that are estimated and identified individually for each regressor p = 1, . . . ,
P . Because the method of Bai and Perron (1998, 2003) is based on op-
timizing the objective function over all possible sub-interval combinations,
allowing for the P-slope parameters to jump individually will dramatically
increase the number of fits in their algorithm (exponentially on the number
of regressors).

Our empirical vehicle for highlighting this new methodology addresses
the stability of the relationship between Algorithmic Trading (AT) and Mar-
ket Quality (MQ). We propose to automatically detect jumps in regression
slope parameters to examine the effect of algorithmic trading on market
quality in different market situations. We find evidence that the relation-
ship between AT and MQ was disrupted between 2007 and 2008. This
period coincides with the beginning of the subprime crisis in the US mar-
ket and the bankruptcy of the big financial services firm Lehman Brothers
and our findings have important implications for proponents and critics of
high-frequency trading.

The remainder of the paper is organized as follows. Section 2 explains the
basic idea of our estimation procedure by using a relatively straightforward
centered univariate panel model. In Section 3, we consider panel models
with unobserved effects and multiple jumping slope parameters, present our
model assumptions, and derive the main asymptotic results. Section 4 pro-
poses a post-wavelet procedure to estimate the jump locations, derives the
asymptotic distribution of the final estimator, and describes selective testing
procedures. In Section 5, we discuss models with an issue of omitted com-
mon factors and endogenous models arising from structural simultaneous
equation systems. Section 6 presents the simulation results of our Monte
Carlo experiments. Section 7 focuses on the empirical application. The
conclusion follows in Section 8. The mathematical proofs are collected in
Appendix A.

4



2 Basic Concepts

A Simple Panel Model with one Jumping Parameter

To simplify exposition of our basic approach, we begin with a special case of
model (1). We consider a centered univariate panel data model of the form

Yit = Xitβt + eit for i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, (2)

where Xit is a univariate regressor, E(eit) = 0, and βt is a scalar with

βt =
S+1∑
j=1

I
(
τj−1 < t ≤ τj

)
βτj , (3)

for some τ0 = 1 < τ1 < . . . < τS+1 = T , where S ≥ 1, τ1, . . . , τS , as well as
the coefficients βτj , j = 1, . . . , S + 1, are unknown.

Some Fundamental Concepts of Wavelet Transform

The idea behind our approach basically consists of using the Haar wavelet
expansion of βt to control for its piecewise changing character. Before con-
tinuing with the estimation method, we introduce some important concepts
and notations that are necessary for our analysis.

We assume that the intertemporal sample size T is dyadic, i.e., T = 2L−1

for some positive integer L ≥ 2. This is a technical assumption that is only
required for constructing the wavelet basis, which are defined in [1, T ] via
different time dilations of order 2l, for l ∈ {1, . . . , L}. In practice, such
an assumption does not impose any real restriction, since one can replicate
the data by reflecting the observations at the boundaries until getting the
desired dimension property. If, for instance, T = 125, we can extend the
sample (Yi1, Xi1), . . . , (YiT , XiT ) with the three last observations (YiT , XiT ),
(YiT−1, XiT−1), and (YiT−2, XiT−2) for T + 1, T + 2, and T + 3, respectively,
to get a new intertemporal size of 27 = 128.

Technically, the discrete wavelet expansion is much like the discrete
Fourier transformation, except that the wavelet expansion is constructed
with a two parameter system: a dilation level l ∈ {1, . . . , L} and a trans-
lation index k ≤ 2l−2. Let {ϕl0,k, k = 1, . . . ,Kl0}, and {ψl,k, l = l0 +
1, . . . , L; k = 1, . . . , 2l−2}, respectively, represent collections of discrete scal-
ing and wavelet functions defined on the discrete interval {1, . . . , 2L−1} such
that

ψl,k(t) = aψl Il,2k−1(t)− a
ψ
l Il,2k(t) and (4)

ϕl0,k(t) = aϕl0Il+1,2k−1(t) + aϕl0Il+1,2k(t), (5)

where aϕl0 =
√

2l0−1, aψl =
√

2l−2, and Il,m(t) is the indicator function that

carries the value one if t ∈ {2L−l(m−1)+1, . . . , 2L−lm} and zero otherwise.
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Then the multiscale discrete Haar wavelet expansion of βt can be presented
as follows:

βt =

Kl0∑
k=1

ϕl0,k(t)dl0,k +
L∑

l=l0+1

Kl∑
k=1

ψl,k(t)cl,k, for t ∈ {1, . . . , T}, (6)

where Kl = 2l−2, for l > 1, and K1 = 1. The coefficients dl,k and cl,k
are called scaling and wavelet coefficients, respectively. Because ϕl0,k(t)
and ψl,k(t) are orthonormal, dl,k and cl,k are unique and can be inter-
preted as the projection of βt on their corresponding bases, i.e., dl0,k =

1
2L−1

∑2L−1

t=1 ϕl0,k(t)βt and cl,k = 1
2L−1

∑2L−1

t=1 ψl,k(t)βt.
Although the Haar wavelet basis functions are the simplest basis within

the family of wavelet transforms, they have properties that facilitate the
analysis of functions with sudden piecewise changes, as we discuss below.

Orthonormalization and Estimation

Note that the collection of functions, in (6), is not unique. Here, we set
l0 = 1, to fix the primary scale to be the coarsest possible with only one
parameter that reflects the general mean of βt. In addition, we propose a
slightly modified version of wavelet expansion to adapt the orthonormaliza-
tion conditions to the requirements of our panel data method.

We consider the following expansion:

βt =
L∑
l=1

Kl∑
k=1

wl,k(t)bl,k for t ∈ {1, . . . , T}, (7)

where

wl,k(t) =

{
a1,1 = a2,1h2,1(t) + a2,2h2,2(t) if l = 1, and
al,2k−1hl,2k−1(t)− al,2khl,2k(t) if l > 1,

(8)

for some positive standardizing scales al,2k−1 and al,2k that, unlike the con-
ventional wavelets, depend on both the dilation level l and translation index
k. Their exact form will be discussed in detail below. We define the function
hl,m(t) as follows:

hl,m(t) =
√

2l−2Il,m(t). (9)

The most appealing feature of the expansion (7) (and (6) with l0 =
1) is that the set of the wavelet coefficients {bl,k} contains at most (S +
1)L non-zero-wavelet coefficients. This important property results from the
fact that each jump in βt can be sensed at each dilation level by at most
one translation function. Proposition 1 states the existence of (7) for any
arbitrary positive real scales al,2k and al,2k−1.
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Proposition 1 Suppose T = 2L−1, for some integer L ≥ 2, and β =
(β1, . . . , βT )

′ ∈ RT a vector that possesses exactly S ≥ 1 jumps at {τ1, . . . , τS |
τ1 < . . . < τS} ⊆ {1, . . . , T} as in (3). Let a1,1, al,2k−1 and al,2k be arbitrary
positive real values for all l ∈ {1, . . . , L}, and k ∈ {1, . . . ,Kl}. Thus, expan-
sion (7) exists and the set of the wavelet coefficients {blk|l = 1, . . . , L; k =
1, . . . ,Kl} contains at most (S + 1)L non-zero coefficients.

Remark 1 If we try to naively use a dummy for each time point to construct
an extension with exactly (S+1) non-zero coefficients, we end up with highly
correlated basis vectors and the differentiation between the unknown zero and
non-zero coefficients in the presence of noise becomes quite problematic. The
Haar wavelet basis functions can be seen as a special design of dummy vectors
that has many technical and computational advantages. We show below that
our structure adapted wavelet estimator achieves mean square consistency
even if the cross-section dimension n is fixed. This is not possible when
naively using T dummy vectors.

Using (7), we can rewrite Model (2) as

Yit =
L∑
l=1

Kl∑
k=1

Xl,k,itbl,k + eit, (10)

where
Xl,k,it = Xitwl,k(t).

In vector notation,
Yit = X ′itb+ eit, (11)

where Xit = (X1,1,it, . . . ,XL,KL,it)
′

and b = (b1,1, . . . , bL,KL)
′
.

To capture the structural breaks of βt, we propose, in a first step, to
estimate the vector of the wavelet coefficients b in (11). Throughout, we as-
sume the existence of an instrument Zit that is correlated withXit and fulfills
E(Ziteit) = 0 for all i and t. The idea behind this assumption is to pro-
vide a general treatment that allows for estimating models with endogenous
regressors such as dynamic models or structural models with simultaneous
equations. Let Zl,k,it = Zitwl,k(t) and Zit = (Z1,1,it, . . . ,ZL,KL,it)

′
. Because

E(Ziteit) = 0 for all i and t, we can infer that E(Zl,k,iteit) = 0, for all l and
k. The required theoretical moment condition for estimating b is

E
(
Zit(Yit −X

′
itb)
)

= 0. (12)

The IV estimator of b (hereafter, denoted by b̃) is obtained by solving the
empirical counterpart of (12), i.e.,

1

nT

n∑
i=1

T∑
t=1

(
Zit(Yit −X

′
itb̃)
)

= 0. (13)
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Remark 2 We know from the Generalized Method of Moments (GMM)
that the IV estimator is equivalent to the just-identified GMM estimator, in
which the number of instruments is equal to the number of parameters to be
estimated. Hence, our estimator of b can be seen as the GMM estimator:

b̃ = arg min
b

1

nT

n∑
i=1

T∑
t=1

(Yit −X
′
itb)Z

′
itWTZit(Yit −X

′
itb), (14)

where WT is an arbitrary symmetric (T × T ) full rank matrix. Since the
choice of WT in the just-identified case is irrelevant, we can use the identity
matrix to solve (14).

Under general assumptions, we can state the consistency of b̃ for any
arbitrary collection of wavelet functions. However, the problem with naively
using the conventional basis functions is that the identification of the zero-
and non-zero coefficients will be ambiguous. Not only will the presence of the
error term in (10) affect the estimates of bl,k but also the non-orthogonality
of Zl′ ,k′ ,it to Xl,k,it across different dilation and translation levels in the
objective function (the IV moment condition) will move the problem from a
classical wavelets shrinkage scheme to a complex model selection problem.

Our solution consists of adjusting the scales a1,1, al,2k−1 and al,2k in (8)
to the structure of Xit and Zit so that following normalization conditions
are satisfied.

(a): 1
nT

∑n
i=1

∑T
t=1Zl,k,itXl′ ,k′ ,it = 1 if (l, k) = (l

′
, k
′
) and

(b): 1
nT

∑n
i=1

∑T
t=1Zl,k,itXl′ ,k′ ,it = 0 for all (l, k) 6= (l

′
, k
′
).

Proposition 3, in Appendix A.1, gives the mathematical conditions for
a1,1, al,2k−1 and al,2k to ensure (a) and (b). The solution is

a1,1 = Q
− 1

2
1,1 ,

al,2k−1 = Q−1l,2k−1
(
Q−1l,2k−1 +Q−1l,2k

)− 1
2 , and

al,2k = Q−1l,2k
(
Q−1l,2k−1 +Q−1l,2k

)− 1
2 ,

whereQ1,1 = 1
nT

∑n
i=1

∑T
t=1XitZit, Ql,2k−1 = 1

nT

∑n
i=1

∑T
t=1XitZith

2
l,2k−1(t),

and Ql,2k = 1
nT

∑n
i=1

∑T
t=1XitZith

2
l,2k(t).

Solving (13) (or (14)) with respect to bl,k under Restrictions (a) and (b),
we obtain

b̃l,k =
1

nT

n∑
i=1

T∑
t=1

Zl,k,itYit. (15)
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Making use of orthonormality, we can directly perform the universal
thresholding scheme of Donoho and Johnstone (1994). Our structure adapted
wavelet estimator of βt (hereafter, the SAW estimator) can be obtained by

β̃t =
L∑
l=1

Kl∑
k=1

wl,k(t)b̂l,k, (16)

where

b̂l,k =

{
b̃l,k if |b̃l,k| > λn,T and
0 else,

(17)

for some threshold λn,T that depends on n and T . Theorems 1, 2 give the
necessary conditions for λn,T to ensure consistency under Assumptions A-C
presented in Section 3.

To detect all possible structural changes, we hence only need T fits, while
e.g. Bai and Perron (2003) need O(T 2) subinterval fits to do a similar job.

Remark 3 If the explanatory variable Xit is exogenous, we can choose
Zit = Xit to instrument all elements in Xl,k,it with themselves. In this case,

our shrinkage estimator b̂l,k can be interpreted as a Lasso estimator with
the advantage of perfect orthogonal regressors; see, e.g., Tibshirani (1996).
More generally, if Xit is allowed to be endogenous and Zl,k,it 6= Xl,k,it, b̂l,k
can be obtained by minimizing a Lasso-penalized just-identified GMM objec-
tive function. That is,

b̂ = arg min
b

1

nT

n∑
i=1

T∑
t=1

(Yit −X
′
itb)Z

′
itWTZit(Yit −X

′
itb) + λn,T |b|, (18)

where |b| =
∑L

l=1

∑Kl
k=1 |bl,k| and WT is an arbitrary symmetric (T ×T ) full

rank matrix. Note that (18) and (17) lead to the same result independent of
the choice of WT .

Now that we have developed procedures for first step SAW estimation
for a straightforward centered panel model we turn to generalizations for
multivariate models with unobserved heterogeneity effects as well as corre-
sponding post-SAW procedures.

3 Two-way Panel Models with Multiple Jumps

3.1 Model

One of the main advantages of using panel datasets is the possibility of
dealing with problems related to the potential effect of unobserved hetero-
geneity in time- and cross-section dimensions. In this section, we extend
the univariate SAW method to allow for multiple jumping parameters in
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panel data models with time constant heterogeneity effects and unobserved
homogeneous time factor.

Collecting the slope parameters in a (P ×1) time-varying vector, we can
rewrite Model (1) as

Yit = µ+X
′
itβt + αi + θt + eit, (19)

where Xit = (X1,it, . . . , XP,it)
′

is the (P × 1) vector of regressors, βt =
(βt,1 . . . , βt,P )

′
is a (P × 1) unknown vector of slope parameters, and for

each βt,p, p ∈ {1, . . . , P}, we have

βt,p =

Sp+1∑
j=1

I
(
τj−1,p < t ≤ τj,p

)
βτj ,p. (20)

Equation (20) allows for each slope parameter βt,p, p ∈ {1, . . . , P}, to change
at p-specific unknown break points in the time.

Even in the absence of structural breaks, the uniqueness of µ, αi and
θt requires some identification conditions. We impose the commonly used
restrictions:

C.1:
∑n

i=1 αi = 0, and

C.2:
∑T

t=1 θt = 0.
(21)

We want to emphasize that the choice of C.1 and C.2 becomes irrel-
evant when the focus lies upon estimating the slope parameters βt,p, p ∈
{1, . . . , P}.

3.2 Estimation

The estimation of Model (19) encounters two additional complications com-
pared to the univariate model discussed in Section 2: besides the need to
control for the presence of the unknown parameters µ, αi, and θt, we have
to deal with multivariate wavelets.

In order to cover the case of dynamic models with both small and large
T , we conventionally start with differencing the model to eliminate the in-
dividual effects and assume the existence of appropriate instruments. By
taking the difference on the left and the right hand side of (19), we have the
expression

∆Yit = X
′
itβt −X

′
it−1βt−1 + ∆θt + ∆eit, (22)

for i ∈ {1, . . . , n} and t ∈ {2, . . . , T}, where ∆ denotes the difference opera-
tor of first order.

We can eliminate the term ∆θt = θt − θt−1 by using the classical within
transformation on the model, i.e., transforming ∆Yit to ∆Ẏit = ∆Yit −
1
n

∑n
i=1 ∆Yit. Alternatively, we can associate ∆θt with an additional unit

regressor in the model and estimate it jointly with βt as a potential jumping
parameter. Indeed, allowing for ∆θt to be piecewise constant over time can
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be very useful for interpretation, especially when the original time effect θt
has approximately a piecewise changing linear trend.

Let Xit = (X
′
it,−X

′
it−1, 1)

′
and γt = (β

′
t, β

′
t−1,∆θt)

′
be (P × 1) vectors,

where P = 2P + 1. We can rewrite Model (22) as

∆Yit = (X
′
it,−X

′
it−1, 1)

 βt
βt−1
∆θt

+ ∆eit,

= X
′
itγt + ∆eit,

(23)

for i ∈ {1, . . . , n} and t ∈ {2, . . . , T}.
Once the unobserved individual effects are eliminated, the new vector of

the slope parameters γt can be estimated by using the multivariate version
of the structure adapted wavelet method (SAW) introduced in Section 2.
The multivariate wavelet expansion of γt can be written as:

γt =
L∑
l=1

Kl∑
k=1

Wlk(t)bl,k for t ∈ {2, . . . , T}, (24)

where L and Kl are defined in the same way as in Section 2, blk = (bl,k,1,
. . . , bl,k,P )

′
is a (P ×1) vector of wavelet coefficients and Wlk(t) is a (P ×P )

multivariate wavelet basis matrix defined as

Wl,k(t) =

{
A1,1 = A2,1H2,1(t) +A2,2H2,2(t) if l = 1, and
Al,2k−1Hl,2k−1(t)−Al,2kHl,2k(t) if l > 1,

(25)

with
Hl,m(t) =

√
2l−2Il,m(t− 1).

Here, Il,m(.) is the indicator function defined in Section 2, and A1,1, Al,2k−1,
and Al,2k are constructed so that the following orthonormality conditions
are fulfilled:

(A): 1
n(T−1)

∑n
i=1

∑T
t=2Z l,k,itX

′

l′ ,k′ ,it
= IP×P if (l, k) = (l

′
, k
′
) and

(B): 1
n(T−1)

∑n
i=1

∑T
t=2Z l,k,itX

′

l′ ,k′ ,it
= 0P×P for all (l, k) 6= (l

′
, k
′
),

where X ′l,k,it = X
′
itWlk(t), IP×P is the (P ×P ) identity matrix, 0P×P is

a (P ×P ) matrix of zeros, and Z ′l,k,it = Z
′
itWl,k(t) with Zit a (P × 1) vector

used to instrument the P variables in Xit; the unit regressor associated with
∆θt and the remaining exogenous regressors (if they exist) can be, of course,
instrumented by themselves.

We can verify that

A1,1 = Q
− 1

2
1,1 ,

Al,2k−1 = Q−1
l,2k−1

(
Q−1
l,2k−1 +Q−1

l,2k

)− 1
2 , and

Al,2k = Q−1
l,2k

(
Q−1
l,2k−1 +Q−1

l,2k

)− 1
2 ,

11



where

Q
1,1

= 1
n(T−1)

∑n
i=1

∑T
t=2 ZitX

′
it,

Q
l,2k−1 = 1

n(T−1)
∑n

i=1

∑T
t=2 ZitX

′
itHl,2k−1(t)

2, and

Q
l,2k

= 1
n(T−1)

∑n
i=1

∑T
t=2 ZitX

′
itHl,2k(t)

2.

The IV estimator of bl,k is the solution to the empirical moment condition

1

n(T − 1)

n∑
i=1

T∑
t=2

L∑
l=1

Kl∑
k=1

(
Z l,k,it(∆Yit −X

′
l,kitb̃l,k)

)
= 0. (26)

Solving (26) for b̃l,k under the the normalization Conditions (A) and (B),
we obtain

b̃l,k,p =
1

n(T − 1)

n∑
i=1

T∑
t=2

Zl,k,it,p∆Yit,

where b̃l,k,p and Zl,k,it,p are the p-th elements of b̃l,k and Z l,k,it, respectively.

Let λn,T be a predetermined threshold and b̂l,k,q the estimator of the
wavelet coefficients after shrinkage, i.e.,

b̂l,k,q =

{
b̃l,k,q if |b̃l,k,q| > λn,T and
0 else.

(27)

The SAW estimator of the parameters γt,p, p ∈ {1, . . . , P}, composing
the vector γt can be obtained by

γ̂t,p =
L∑
l=1

Kl∑
k=1

P∑
q=1

Wlk,p,q(t)b̂l,k,q, (28)

where Wlk,p,q is the (p, q)- element of the basis matrix Wlk(t), for p, q ∈
{1, . . . , P}.

Recall that by construction γt,p = βt,p, γt,p+P = βt−1,p for p ∈ {1, . . . , P}
and γt,p = ∆θt for p = P . A first step estimator of βt,p for t ∈ {2, . . . , T} can
be obtained by γ̂t,p. Another natural estimator of βt,p for t ∈ {1, . . . , T − 1}
is γ̂t+1,p+P . A first step estimator of ∆θt can be obtained by γ̂t,P . We
show, in Section 3.3, the uniform and the mean squared consistency of γ̂t,p
for all p ∈ {1, . . . , P}. We propose, however, to use this estimator only
as a first step estimator for estimating the jump locations τ1,p, . . . , τSp,p,
p ∈ {1, . . . , P}. Once these dates are detected, we propose to perform a
post-SAW estimation in order to get more efficient estimates and permit
classical inferences to be conducted; see Section 4.3.

Remark 4 The first step estimation of Model (19) is based on the SAW
estimation of the transformed Model (22), which is performed without tak-
ing into account the fact that γt,p and γt+1,p+P are identical time series of
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parameters. Although the estimators γ̂t,p and γ̂t+1,p+P are not restricted to
be identical for t ∈ {2, . . . , T − 1}, they present a beneficial property that
can be exploited for consistently estimating the jump locations; see Section
4.2. The loss of efficiency due to the extended number of parameters can be
redressed through a post-SAW estimation once the jump locations are con-
sistently estimated; see Section 4.3.

3.3 Assumptions and Main Asymptotic Results

We now present a set of assumptions that are necessary for our asymptotic
analysis. Throughout, we use Ec(.) to define the conditional expectation
given {Xit}i,t∈N∗2 and {Zit}i,t∈N∗2 , where N∗ = N \ {0}. We denote by M a

finite positive constant, not dependent on n and T . The operators
p−→ and

d−→ denote the convergence in probability and distribution. Op(.) and op(.)
are the usual Landau-symbols. The Frobenius norm of a (p × k) matrix A
is denoted by ||A|| = [tr(A

′
A)]1/2, where A

′
denotes the transpose of A.

Our theoretical setup relies on the following assumptions.

Assumption A - Data Dimension and Stability Intervals:

(i) T−1 = 2L−1 for some natural number L > 1; the number of regressors
P is fixed.

(ii) n → ∞; T is either fixed or passes to infinity simultaneously with n
such that log(T )/n→ 0.

(iii) minj,p |βτj,p − βτj−1,p | does not vanish when n and T pass to infinity;
all stability intervals (τj,p − τj−1,p)→∞ uniformly in n, as T →∞.

Assumption B - Regressors and Instruments:

(i) for all i and t, Ec(Ziteit) = 0; for all l ∈ {1, . . . , L} and k ∈ {1, . . . ,Kl},

Q
l,k

=
1

n · ]{s|hl,k(s) 6= 0}
∑

t∈{s|hl,k(s)6=0}

n∑
i=1

ZitX
′
it

p−→ Q◦
l,k
,

whereQ◦
l,k

is a (P×P ) full rank finite matrix with distinct eigenvectors.

(ii) The moments E||Zit||4 and E||Xit||4 are bounded uniformly in i and
t; for Al,2k = Q−1

l,2k
(Q−1

l,2k
+Q−1

l,2k−1)
−1/2 and Al,2k−1 = Q−1

l,2k−1(Q
−1
l,2k

+

Q−1
l,2k−1)

−1/2, the moments E||Al,2k||4 and E||Al,2k−1||4 are bounded

uniformly in l and k.

13



(iii) the multivariate distribution of {∆eit}i∈N∗,t∈N∗\{1} is Sub-Gaussian so
that every linear combination

ΠnT (as,s′ ) =

s
′∑

t=s+1

n∑
i=1

as,s′ ,it√
n(s′ − s)

∆eit,

with E(as,s′ ,it∆eit) = 0 and E
(
Π2
nT (as,s′ )

)
≤ M , is Sub-Gaussian

distributed of order ΣnT (as,s′ ) = E
(
Π2
nT (as,s′ )

)
, i.e.,

P
(
Σ
− 1

2
nT (as,s′ )|ΠnT (as,s′ )| ≥ c

)
≤ 1

c
exp(−c

2

2
),

for any c > 0.

Assumption C - Weak Dependencies and Heteroskedasticity in the
Error Term: Ec(∆eit∆ejm) = σij,tm, |σij,tm| ≤ σ̄ for all (i, j, t,m) such
that

1

n(s′ − s+ 1)

n∑
i=1

n∑
j=1

s
′∑

t=s+1

s
′∑

m=s+1

|σij,tm| ≤M.

Assumption A.(i) specifies a dyadic condition on the intertemporal data
size T . This is a technical assumption that is only required for constructing
the dyadic wavelet basis functions. As mentioned earlier, in practice, one can
replicate the data by reflecting the observations at the boundaries to get the
desired dimension. The asymptotic property of the estimator, will, however
depend on the original data size and not on the size of the replicated data.
Assumption A.(ii) allows for the time dimension T to be very long compared
to n but in such a way that log(T ) = o(n). A.(ii) considers also the classical
case of panel data, in which T is fixed and only n→∞. Assumption A.(iii)
guarantees that the jumps do not vanish as n and/or T pass to infinity.
The second part of Assumption A.(iii) can be alleviated to allow for some
stability intervals to stay fixed if T →∞. Assuming the stability intervals to
pass to infinity when T gets large allows for interpreting the T -asymptotic
as a full-in asymptotic.

Assumption B.(i) requires that the probability limit of Q
l,k

is a full

rank finite matrix with distinct eigenvectors. This is to ensure that its
eigen-value decompostion exists. Assumption B.(ii) specifies commonly used
moment conditions to allow for some limiting terms to be Op(1) when using
Chebyshev inequality. The Sub-Gaussian condition in Assumption B.(iii)
excludes heavy tailed distributed errors but does not impose any specific
distribution.

Assumption C allows for a weak form of time series and cross section
dependence in the errors as well as heteroskedasticities in both time and
cross-section dimension. It implies that the covariances and variances are
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uniformly bounded and the double summations over all possible time par-
titions are well behaved. The assumption generalizes the restricted case of
independent and identically distributed errors.

The following Lemma establishes the main asymptotic results for the
structure adapted wavelet coefficients.

Lemma 1 Suppose Assumptions A-C hold, then

(i)

sup
l,k,q

∣∣∣b̃l,k,q − bl,k,q∣∣∣ = Op
(√

log(T − 1)/n(T − 1)
)
,

(ii) for some finite M >
√

2,

sup
l,k,q

∣∣∣b̃l,k,q − bl,k,q∣∣∣ ≤M√log((T − 1)P )/n(T − 1)

holds with a probability that converges to 1 independently of n, as T →
∞.

Theorem 1 establishes the uniform and the mean square consistency of
γ̃t,p.

Theorem 1 Assume Assumptions A-C, then the following statements hold:

(i) supt∈{2,...,T} |γ̂t,p−γt,p| = op(1) for all p ∈ {1, . . . , P}, if
√
T − 1λn,T →

0, as n, T →∞ or n→∞ and T is fixed, and

(ii) 1
T−1

∑T
t=2 ||γ̂t − γt||2 = Op

(
J∗

(T−1)(log(T − 1)/n)κ
)
, where J∗ = min{

(
∑P

p=1 Sp+1) log(T −1), (T −1)} , if
√
T − 1λn,T ∼ (log(T −1)/n)κ/2,

for any κ ∈]0, 1[.

Uniform consistency is obtained when n→∞ and T is fixed or n, T →∞
with log(T )/n → 0. If the maximum number of jumps is fixed, the mean
square consistency is obtained even when n is fixed and only T →∞.

In our wavelet approach, accuracy of parameter estimates improves with
n and T . From Lemma 1 and Theorem 1, we can show that the mean
square error of our SAW estimates of βt,p, t ∈ {1, . . . , T}, converges at a
rate of (log T )2/(Tn), for some λn,T , while the mean square error for the
dummy approach discussed in Remark 1 only converges at a rate of 1/n.
The explanation for this effect lies in the special structure of wavelets. It
is a basis expansion, where each basis function is local and describes the
behavior in a specific subinterval. Only the first basis function is global.
The corresponding parameter is fitted over all nT observations. With the
fitted first basis function we essentially quantify the best global fit with a
constant β. At each resolution level L = 1, 2, 3, . . . we can then analyze
parameter changes in 2(L−1) local subintervals, which correspond to the
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respective basis functions. Each of these subintervals contains approximately
nT/2(L−1) observation points. This means that the “relative error” of the
coefficient estimates increases as L increases. The coefficients of the lowest
level basis functions are only determined from 2n observations and are the
least accurate as they are highly influenced by noise.

Accuracy of our SAW estimate also depends on whether or not the jump
locations are dyadic. As an illustration, consider the case of one jump at
some location τ = τ1,1 = · · · = τ1,P . If τ = (T − 1)/2, then only the
global fit and another basis function is necessary, and the mean squared
error of the parameter estimates is proportional to 1/(nT ). The same is
true if e.g. τ = 3(T − 1)/4, in which case one additional resolution level is
required, but the mean squared error will still be proportional to 1/(nT ).
Also, with probability tending to 1 the estimated location will converge
to the true location even for fixed n. For arbitrary (non-dyadic) locations
of the jump points, the inaccurate highest resolution level also will play a
role. In this case for fixed n the true point might not be exactly identified
even for large T . Nevertheless, the information acquired from higher levels
may still allow us to say with high probability that the true point lies, e.g.,
between (6/8)T and (7/8)T . Theorem 1 proves that the distance between
the true and estimated location will be at least of order OP (log T/

√
nκ),

i.e,
√
T |τ̂ /T − τ/T | = OP (log T/

√
Tnκ). For fixed n and simultaneous

parameter jumps, Bai and Perron (2003) arrive at similar theoretical results
and thus our approach may be seen as a computationally more efficient
variant when there are only T subinterval fits.

A threshold that satisfies Conditions (i) and (ii) in Theorem 1, can be
constructed as follows:

λnT = V̂
1
2
nT

(
2 log((T − 1)P )

n(T − 1)1/κ

)κ/2
, for some κ ∈]0, 1[, (29)

where V̂nT is the empirical variance estimator corresponding to the largest
variance of 1√

nT

∑n
i=1

∑T
t=1Zit,l,k,p∆eit over l, k, and p. Such an estimator

can be obtained by using the residuals ẽit of a pre-intermediate SAW regres-
sion performed with a plug-in threshold λ∗nT = 0. We want to emphasize

that asymptotically all we need is that V̂nT be strictly positive and bounded.

The role of V̂
1
2
nT is only to give the threshold a convenient amplitude. The

role of κ < 1 is to trade off the under-estimation effect that can arise from the
plug-in threshold λ∗n,T = 0. An ad-hoc choice of κ is 1−log log(nT )/ log(nT ).
For more accurate choices, we refer to the calibration strategies proposed by
Hallin and Lǐska (2007) and Alessi et al. (2010).

Remark 5 So far, we have considered the estimation of jumping slope pa-
rameters in the case of stochastically bounded regressors; see Assumption B.
Our method should also be appropriate for panel co-integration models. If
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the observed variables are integrated, for instance I(1), the convergence rate
in Lemma 1 will be different (in general faster), but the shrinkage idea and
the consistency of the jumping slope estimator remain valid. All we need is
an appropriate threshold that asymptotically dominates the supremum esti-
mator of the zero coefficients supl,k,q|bl,k,q=0 |b̃l,k,q| but is strictly dominated
by all non-zero coefficients {|bl,k,q| 6= 0} as n and/ or T go to infinity.

4 Post-SAW Procedures

4.1 Tree-Structured Representation

The intrinsic problem of wavelets is that wavelet functions are constructed
via dyadic dilations. Error may make this feature spuriously generate some
additional mini jumps to simulate the big (true) jump when it is located
at a non-dyadic position. To construct a selective inference for testing the
systematic jumps it is important to encode the coefficients that may gen-
erate such effects. One possible approach is to examine the so-called tree-
structured representation, which is based on the hierarchical interpretation
of the wavelet coefficients. Recall that the wavelet basis functions are nested
over a binary multiscale structure so that the support of an (l, k)- basis (the
time interval in which the basis function is not zero) contains the supports
of the basis (l+1, 2k−1) and (l+1, 2k). We say that the wavelet coefficient
bl,k is the parent of the two children bl+1,2k−1 and bl+1,2k. This induces a
dyadic tree structure rooted to the primary parent b1,1. To encode the pos-
sible systematic jumps, we have to traverse the tree up to the root parent
in a recursive trajectory starting from the non-zero coefficients at the finest
resolution (highest dilation level). While the presence of a non-zero coeffi-
cient, at the highest level, indicates the presence of a jump, the parent may
have a non-zero coefficient only to indicate that the stability interval around
this jump is larger than its support.

As an illustration, consider the tree-structured representation in Figure
1. The coefficients at the not-ringed nodes fall in the interval [−λn,T , λn,T ]
and carry the value zero. Starting from the non-zero coefficient b̃5,6 at the
finest resolution and traversing the tree up to the root parent, we can identify
b̃4,3, b̃3,2, and b̃2,1 as candidates for generating potential visual artifacts at
points 8, 10, and 12 if a jump exists only at 11. These selected jump points
can be tested by using, e.g., the equality test of Chow (1960). Our allowance
for a heteroskedastic error process is in part to allow us to circumvent the
well-known size and power distortions of the Chow test discussed in Toyoda
(1974) and Schmidt and Sickles (1977), among others.

If we have an additional observation, we can construct a shifted wavelet
expansion on a second (shifted) dyadic interval. The tree-structured repre-
sentation of the new coefficients can provide important information about
the significance of the potential jumps detected in the first tree. Continuing
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Figure 1: An illustrating example of a tree-structured representation for the
wavelet coefficients.

with the same example of Figure 1, we can see that the tree-structured rep-
resentations of the shifted and non-shifted coefficients presented in Figure 2
support the hypothesis of only one jump at 11.

In the multivariate case, the interpretation of the tree-structured repre-
sentation can be complicated since the nodes represent vectors that contain
simultaneous information about multiple regressors. In order to construct
an individual tree for each parameter, we can re-transform each element of
the (P × 1) vector γt with the conventional univariate wavelet basis func-
tions defined in (4). Recall that, in our differenced model, γt,p = βt,p and
γt,p+P = βt−1,p. This allows us to obtain for each slope parameter, βp, two
sets of univariate wavelet coefficients:

c
(s)
l,k,p =

1

T − 1

T∑
t=2

ψl,k(t− 1)γt,p, (30)

and

c
(u)
l,k,p =

1

T − 1

T−1∑
t=1

ψl,k(t)γt+1,p+P . (31)

We use the superscripts (s) and (u) in (30) and (31) to denote the shifted
and non-shifted coefficients, respectively.

Replacing γt,p with γ̃t,p =
∑L

l=1

∑Kl
k=1

∑P
q=1Wlk,p,q(t)b̃l,k,q and γt+1,p+P

with γ̃t+1,p+P =
∑L

l=1

∑Kl
k=1

∑P
q=1Wlk,p+P,q(t+ 1)b̃l,k,q, we obtain

c̃
(s)
l,k,p =

1

T − 1

T∑
t=2

ψl,k(t− 1)γ̃t,p, (32)
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Figure 2: An illustrating example of a tree-structured representation for the
shifted and non-shifted coefficients.

and

c̃
(u)
l,k,p =

1

T − 1

T−1∑
t=1

ψl,k(t)γ̃t+1,p+P . (33)

Having an appropriate threshold for c̃
(u)
l,k,p, we can construct the shifted

and non-shifted tree-structured representation for each parameter, as be-
fore. This can provide important information about the potential spurious
jumps since all low level parameters in the shifted tree fall in the highest
level of the non-shifted tree and vice versa. Based on this predicate, we
propose a selection method for consistently detecting the jump locations.
All we need is an appropriate threshold for the highest coefficients.

The following Lemma establishes the uniform consistency in k and p of

both c̃
(s)
L,k,p and c̃

(u)
L,k,p and states their order of magnitude in probability.

Lemma 2 Suppose Assumptions A-C hold, then, for all p ∈ {1, . . . , P} and
m ∈ {m, s}

sup
k

∣∣∣c̃(m)
L,k,p − c

(m)
L,k,p

∣∣∣ = Op
(√

log(T − 1)/n(T − 1)
)
.

From Lemma 2, we can see intuitively that asymptotically both c̃
(m)
L,k,p and

b̃l,k,p can be shrunk by the same threshold λn,T . Theorem 2 gives the nec-
essary asymptotic conditions to ensure consistency of the jump selection
method.
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4.2 Detecting the Jump Locations

As mentioned earlier, interpreting all jumps of the SAW estimator as struc-
tural breaks may lead to an over-specification of the break points. In this
Section, we exploit the information from the shifted and unshifted univariate
wavelet coefficients (32) and (33) to construct a consistent selection method
for detecting the jump locations.

We use (32) and (33) to obtain the following two estimators of ∆βt:

∆β̃
(u)
t,p =

KL∑
k=1

∆ψL,k(t)ĉ
(u)
L,k,p, for t ∈ E , (34)

and

∆β̃
(s)
t,p =

KL∑
k=1

∆ψL,k(t− 1)ĉ
(s)
l,k,p, for t ∈ Ec, (35)

where
ĉ
(.)
l,k,p = I(|c̃(.)l,k,p| > λn,T ),

E is the set of the even time locations {2, 4, . . . , T −1}, Ec is the complement
set composed of the odd time locations {2, 3, 4, . . . , T} \ E , and I(.) is the
indicator function.

The number of jumps of each parameter can be estimated by

S̃p =
∑
t∈E

I(∆β̃
(u)
t,p 6= 0) +

∑
t∈Ec

I(∆β̃
(s)
t,p 6= 0). (36)

The jump locations τ̃1,p, . . . , τ̃S̃p,p can be identified as follows:

τ̃j,p = min

{
s

∣∣∣∣∣j =
s∑
t=2

I
(

∆β̃
(u)
t,p 6= 0, t ∈ E

)
+

s∑
t=3

I
(

∆β̃
(s)
t,p 6= 0, t ∈ Ec

)}
,

(37)
for j ∈ {1, . . . , S̃p}. The maximal number of breaks S =

∑P
p=1 = Sp can be

estimated by S̃ =
∑P

p=1 S̃p.

Theorem 2 Under Assumptions A-C, if (c.1) :
√

n(T−1)
log((T−1))λn,T → ∞ and

(c.2) :
√
T − 1λn,T → 0, as n, T →∞, then

(i) limn,T→∞ P (S̃1 = S1, . . . , S̃p = Sp) = 1 and

(ii) limn,T→∞ P (τ̃1,1 = τ1,1, . . . , τ̃SP ,P = τSP ,P |S̃1 = S1, . . . , S̃p = Sp) = 1.

The crucial element for consistently estimating τ1,1, . . . , τSP ,P is, hence,
using a threshold that converges to zero but at a rate slower than

√
log(T − 1)/(n(T − 1)).
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4.3 Post-SAW Estimation

For known τ1,p, . . . , τSp,p, we can rewrite Model (22) as

∆Ẏit =
P∑
p=1

Sp+1∑
j=1

∆Ẋ
(τj,p)
it,p βτj,p + ∆ėit, (38)

where
∆Ẋ

(τj,p)

(it,p) = ∆Ẋit,pI
(
τj−1,p < t ≤ τj,p

)
,

with τ0,p = 1 and τSp+1,p = T , for p ∈ {1, . . . , P}. The dot operator
transforms the variables as follows: u̇it = uit − 1

n

∑n
i=1 uit.

Depending on the set of the jump locations τ := {τj,p|j = 1, . . . , Sp +
1, p = 1, . . . , P}, the vector presentation of Model (38) can be rewritten as

∆Ẏit = ∆Ẋ
′

it,(τ)β(τ) + ∆ėit, (39)

where β(τ) = (βτ1,1 , . . . , βτS1+1,1 , . . . , βτ1,P . . . , βτSP+1,P )
′
and ∆Ẋit,(τ) = (∆Ẋ

(τ1,1)
it,1 ,

. . . ,∆Ẋ
(τS1+1,1)

it,1 , . . . ,∆Ẋ
(τ1,P )
it,P . . . ,∆Ẋ

(τSP+1,P )

it,P )
′

.

Let Zit,p denote the instrument chosen for ∆Ẋit,p and Zit,(τ) = (Z
(τ1,1)
it,1 ,

. . . , Z
(τS1+1,1)

it,1 , . . . , Z
(τ1,P )
it,P , . . . , Z

(τSP+1,P )

it,P )
′
, with Z

(τj,p)
it,p = Zit,pI

(
τj−1,p < t ≤

τj,p
)
. The conventional IV estimator of β(τ) is

β̂(τ) =
( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẏit
)
. (40)

Conditional on S̃1 = S1, . . . , S̃P = SP , we can replace the set of the true
jump locations τ in (40) with the detected jump locations τ̃ := {τ̃j,p|j ∈
{1, . . . , Sp + 1}, p ∈ {1, . . . , P}}, to obtain the post-SAW estimator:

β̂(τ̃) =
( n∑
i=1

T∑
t=2

Zit,(τ̃)∆Ẋ
′

it,(τ̃)

)−1( n∑
i=1

T∑
t=2

Zit,(τ̃)∆Ẏit
)
. (41)

From (26) and (41), we can see that the number of parameters to be
estimated after detecting the jump locations is much smaller than the num-
ber of parameters required to estimate the slope parameters in the SAW
regression (

∑P
p=1(Sp + 1) < T (P − 1)). It is evident that such a gain in

terms of regression dimension improves the quality of the estimator.

Assumption E - Central Limits: Let T(τ) be a (
∑P

p=1(Sp+1)×
∑P

p=1(Sp+
1)) diagonal matrix with the diagonal elements T1,1, . . . , TSP+1,P , where
Tj,p = τj,p − τj−1,p + 1.
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(i) : (nT(τ))−1
∑n

i=1

∑T
t=2 Zit,(τ)∆Ẋ

′

it,(τ)

p→ Q◦(τ) where Q◦(τ) is a full rank
finite matrix.

(ii) : (nT(τ))−1
∑n

i=1

∑T
t=2

∑n
j=1

∑T
s=2 Zit,(τ)Z

′

js,(τ)σij,ts
p→ V ◦(τ), where V ◦(τ)

is a full rank finite matrix.

(iii) :
(
nT(τ)

)− 1
2
∑n

i=1

∑T
t=2 Zit,(τ)∆ėit

d→ N(0, V ◦(τ)).

Assumption E presents standard assumptions that are commonly used
in the literature on instrumental variables.

Theorem 3 Suppose Assumptions A-E hold. Then conditional on S̃1 =
S1, . . . , S̃p = Sp, we have

√
nT

1
2

(τ)

(
β̂(τ̃) − β(τ)

) d→ N(0,Σ(τ)),

where Σ(τ) = (Q◦(τ))
−1(V ◦(τ))(Q◦(τ))−1.

If T → ∞ and all Tj,p diverge proportionally to T , then β̂τj ,p achieves the

usual
√
nT - convergence rate. According to Theorem 3, our final estimator of

the model parameters are first-order efficient: they have the same asymptotic
distribution as the (infeasible) estimators that would be obtained if all jump
locations were exactly known a priori and thus possess the ”oracle property”
in regard to these parameter estimates. The final estimator proposed by
Qian and Su (2014) also shares this oracle property.

To summarize, our method essentially consists of two steps. A structure
adapted wavelet (SAW) estimation followed by the post-SAW procedures.
Our SAW method could be applied in a time series context by fixing n and
letting T be large, in which case our approach may be considered a more
parsimonious variant of the subinterval approach of Bai and Perron (1998,
2003). Although we do not pursue this issue in this paper we do show in
Theorem 1 that our wavelet procedure provides (mean square) consistent
parameter estimates even for fixed n and large T . In contrast, the method
of Qian and Su (2014) essentially consists of three steps. In a first step they
use the ”näıve” estimator of βt for every single time point t. This is used
in the second step to construct appropriate weights for the adaptive Lasso
procedure. In a third step they then propose a post Lasso instead of our
wavelet procedure. An important point is that their method will only work
if n is large. Their method does not consider cases in which n is small and
T is large as we do.

Because the asymptotic variance Σ(τ) of β̂(τ̃) in Theorem 3 is unknown,
consistent estimators of Q◦(τ) and V ◦(τ) are required to perform inferences. A
natural estimator of Q◦(τ) is

Q̂(τ̃) = (nT(τ̃))−1
n∑
i=1

T∑
t=2

Zit,(τ̃)∆X
′

it,(τ̃)
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and a consistent estimator of Σ(τ) can be obtained by

Σ̂(τ̃),j = Q̂−1(τ̃)V̂
(c)
(τ̃) Q̂

−1
(τ̃),

where V̂
(c)
(τ̃) a consistent estimator of V ◦(τ̃) that can be constructed depending

on the structure of ∆ėit. For brevity, we distinguish only four cases:

1. The case of homoscedasticity without the presence of auto- and cross-
section correlations:

V̂
(1)
(τ̃) = (nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)σ̂
2,

where σ̂2 = 1
n(T−1)

∑n
i=1

∑T
t=2 ∆ˆ̇e2it, with ∆ˆ̇eit = ∆Ẏit −∆Ẋ

′

it,(τ̃)β̂(τ̃).

2. The case of cross-section heteroskedasticity without auto- and cross-
section correlations:

V̂
(2)
(τ̃) = (nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)σ̂
2
i ,

where σ̂2i = 1
T−1

∑T
t=2 ∆ˆ̇e2it.

3. The case of time heteroskedasticity without auto- and cross-section
correlations:

V̂
(3)
(τ̃) = (nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)σ̂
2
t ,

where σ̂2t = 1
n

∑n
i=1 ∆ˆ̇e2it.

4. The case of cross-section and time heteroskedasticity without auto-
and cross-section correlations:

V̂
(4)
(τ̃) = (nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)∆
ˆ̇e2it.

Proposition 2 Under Assumptions A-E, we have, as n, T → ∞, Σ̂
(c)
(τ̃) =

Σ(τ) + op(1), for c = 1, 2, 3, and 4.

Remark 6 If the errors (at the difference level) are autocorrelated, V
(c)
(τ̃) can

be estimated by applying the standard heteroskedasticity and autocorrelation
(HAC) robust limiting covariance estimator to the sequence {Zit,(τ̃)∆ˆ̇eit}i,t
for i ∈ N∗ and t ∈ N∗ \ {1}; see, e.g., Newey and West (1987). In the pres-
ence of additional cross-section correlations, one can use the partial sample
method together with the Newey-West procedure as proposed by Bai (2009).
A formal proof of consistency remains, in this case, to be explored.
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Based on the asymptotic distribution of β̂(τ̃) and the variance estimators
presented in Proposition 2, usual test statistics such as t- and χ2-tests can be
used for inference. In Appendix B, we propose, as supplementary materials,
two test statistics that can be used directly for inference on our post-SAW
detected jumps: a Chow-type test to examine the statistical significance of
each estimated jump and a Hotelling-type test to examine whether a model
with constant parameters is more appropriate for the data than a model
with jumps.

5 SAW with Unobserved Multifactor Effects

If the endogeneity arises from a dynamic model such that one variable on
the right hand side is the lag of the explained variable Yit, one can follow
the existing literature on dynamic panel models and choose one of the com-
monly used instruments such as Yit−2, Yit−3, and/or Yit−2−Yit−3 ; see, e.g.,
Anderson and Hsiao (1981), Arellano and Bond (1991), and Kiviet (1995).

In this section, we discuss two possible model extensions: the case in
which endogeneity arises from an omitted factor structure; and the case in
which endogeneity is due to the presence of simultaneous equations.

Presence of Multifactor Errors

There is a growing literature on large panel models that allows for the pres-
ence of unobserved time-varying individual effects having an approximate
factor structure such that

eit = Λ
′
iFt + εit,

where Λi is a (d×1) vector of individual scores (or loadings) Λi1, . . . ,Λid and
Ft a (d×1) vector of d common factors F1t, . . . , Fdt. Note that this extension
provides a generalization of panel data models with additive effects and can
be very useful in many application areas, especially when the unobserved
individual effects are non-static over time; see, e.g., Pesaran (2006), Bai
(2009), Ahn et al. (2013), Kneip et al. (2012), and Bada and Kneip (2014).

Leaving the factor structure in the error term and estimating the re-
maining parameters without explicitly considering the presence of a po-
tential correlation between the observed regressors X1,it, . . . , XP,it and the
unobserved effects Λi and Ft may lead to an endogeneity problem caused
by these omitted model components. The problem with the presence of
the factor structure in the error term is that such a structure can not be
eliminated by differencing the observed variables or using a simple within-
transformation. Owing to the potential correlation between the observable
regressors X1,it, . . . , XP,it and the unobservable heterogeneity effects, we al-
low for the data generating process of Xp,it to have the following rather
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general form:
Xp,it = ϑ

′
p,iFt + Λ

′
iGp,t + apΛ

′
iFt + µp,it, (42)

where ϑp,i is a (d× 1) vector of unknown individual scores, Gp,t is a (d× 1)
vector of unobservable common factors, ap is a p-specific univariate coeffi-
cient, and µit is an individual specific term that is uncorrelated with εit, Λi,
ϑi, Ft and Gt.

Rearranging (42), we can rewrite Xp,it as

Xp,it = ϑ∗
′
p,iG

∗
p,t + µp,it, (43)

where
ϑ∗
′
p,i = H(apΛ

′
i + ϑ

′
p,i,Λ

′
i), (44)

and
G∗p,t = H−1(F

′
t , G

′
p,t)
′
, (45)

for some (2d × 2d) full rank matrix H. The role of H is only to ensure
orthonormality and identify uniquely (up to a sign change) the elements
of the factor structure so that

∑T
t=1G

′∗
p,tG

∗
p,t/T is the identity matrix and∑n

i=1 ϑ
∗′
p,iϑ
∗
p,i/n is a diagonal matrix with ordered diagonal elements.

We can see from (42) that an ideal candidate for instrumenting Xp,it is
µp,it. Since µp,it is unobserved, a feasible instrument can be obtained by

Zp,it = Xp,it − ϑ̂∗
′
p,iĜ

∗
p,t, (46)

where Ĝ∗
′
p,t is the t-th row element of the (2d × 1) matrix containing the

eigenvectors corresponding to the ordered eigenvalues of the covariance ma-
trix of Xp,it and ϑ̂∗

′
p,i is the projection of Ĝ∗

′
p,t on Xp,it. If d is unknown,

one can estimate the dimension of ϑ∗
′
p,iG

∗
p,t by using an appropriate panel

information criterion; see, e.g., Bai and Ng (2002) and Onatski (2010). A
crucial assumption about the form of dependency in µp,it is that, for all T
and n, and every i ≤ n and t ≤ T ,

1.
∑T

s=1 |E(µp,itµp,is)| ≤M and

2.
∑n

k=1 |E(µp,itµp,kt)| ≤M .

Bai (2003) proves the consistency of the principal component estimator

when additionally 1
T

∑T
t=1G

∗′
p,tG

∗
p,t

p→ ΣG∗p for some (2d×2d) positive definite

matrix ΣG∗p , ||ϑ
∗
p,i|| ≤M for all i and p, and || 1n

∑n
i=1 ϑ

∗′
p,iϑ
∗
p,i − Σϑ∗p || −→ 0,

as n→∞ for some (2d× 2d) positive definite matrix Σϑ∗p .
By instrumenting Xp,it with Zp,it in (46), we can consistently estimate

the jumping slope parameters as before.
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Two-Step SAW for Jump Reverse Causality

Besides the issues of omitted variables and dynamic dependent variables, an-
other important source of endogeneity is the phenomenon of reverse causal-
ity. This occurs when the data, e.g., is generated by a system of simultaneous
equations.

Consider the following two-equation simultaneous equation system:

Yit = µ+
P∑
p=1

Xp,itβt,p + αi + θt + eit, (47)

and
Xq,it = btYit +

∑
p∈{1,...,P}\{q}

Xp,itdt,p + v + ui + ϑt + νit, (48)

for some a q ∈ {1, . . . , P}, where bt 6= 1/βt,q, and the parameters v, ui, and
ϑt are unknown parameters.

Neglecting the structural form of Xq,it in Equation (48) and estimating
the regression function (47) without instrumenting this variable results in
an inconsistent estimation since Xq,it and eit are correlated (due to the
presence of Yit in Equation (48)). A natural way to overcome this type of
endogeneity problem is to use the fitted variable obtained from Equation (48)
as an instrument after replacing Yit with its expression in (47). However,
our model involves an additional complication related to the time-changing
character of βt,q and the presence of the unobservable heterogeneity effects
that render such two-stage least squares estimators problematic. Inserting
(47) in (48) and rearranging it leads to a panel model with time-varying
unobservable individual effects:

Xq,it =
∑

p∈{1,...,P}\{q}

Xp,itd
∗
t,p + ϑ∗1t + uiϑ

∗
2t + αiϑ

∗
3t + εit, (49)

where
d∗t,p = btβt,p + dt,p,

ϑ∗1t = btµ+btθt+ϑt+v
1−btβt,p ,

ϑ∗2t = 1
1−btβt,p ,

ϑ∗3t = btµ+btθt+ϑt+v
1−btβt,p , and

εit = bteit + εit.

Note that the regression model in (49) can be considered a special case of
the model with multifactor errors discussed above. A potential instrument
for Xq,it in (47) is then

Zq,it =
∑

p∈{1,...,P}\{q}

Xp,itd̂
∗
t,p + ϑ̂

′
iĜt, (50)
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where d̂∗t,p and ϑ̂
′
iĜt are the estimators of bt and ϑ

′
iGt = ϑ∗1t + uiϑ

∗
2t +αiϑ

∗
3t,

respectively, and which can be obtained from (49) by using the instruments
proposed above to control for the omitted factor structure ϑ∗1t+uiϑ

∗
2t+αiϑ

∗
3t.

6 Monte Carlo Simulations

In this section we examine, through Monte Carlo simulations, the finite
sample performance of our method. Our data generating-processes are based
on the following panel data model:

Yit = Xitβt + αi +
√
θiteit for i ∈ {1, . . . , n} and t ∈ {1, . . . T},

where

βt =


βτ1 for t ∈ {1, . . . , τ1},
...
βτS+1 for t ∈ {τS + 1, . . . , T},

(51)

with

βτj =
2

3
· (−1)j and τj =

⌊
j

S + 1
(T − 1)

⌋
, for j = 1, . . . , S + 1.

We examine the situations where the number of jumps is S = 0, 1, 2, 3. In
the no-jump case (S = 0), we compare the performance of our method with
the performance of the classical Least Squares Dummy Variable Method
(LSDV), the Generalized Least Squares Method for random effect models
(GLS), the Iterated Least Squares Method (ILS) of Bai (2009), and the
semi-parametric method (KSS) of Kneip et al. (2012). Our thresholding
parameter is calculated with κ = 1 − log(log(nT ))/ log(nT ). To see how
the properties of the estimators vary with n and T , we consider 12 different
combinations with the sizes n = 30, 60, 120, 300 and T = 2L−1 + 1, for
L = 6, 7, 8, i.e., T = 33, 65, 129. We consider the cases of dyadic (e.g., when
S = 1 and τ1 = (T − 1)/2) and non-dyadic jump locations (when S = 2, 3)
as well as models with exogenous and endogenous regressors.

The rationale for these values is simply related to the DGP’s below that
we use for generating the jump locations. According to our DGP if S = 1
then τ1 is dyadic (T − 1)/2 for T = 33, 65, and, 129. When S = 2, 3 then
the generated τj are by construction at non-dyadic locations.

Our experiments are based on the results of seven different DGP-configurations:

DGP1 (exogeneity, and i.i.d. errors): the dependent variable Xit is un-
correlated with eit and generated by

Xit = 0.5αi + ξit, (52)

with ξit, αi, eit ∼ N(0, 1) and θit = 1 for all i and t.
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DGP2 (exogeneity, and cross-section heteroskedasticity): the DGP of the
exogenous regressor Xit is of form (52); cross-sectionally heteroskedastic
errors such that eit ∼ N(0, 1) with θit = θ∗i ∼ U(1, 4) for all t

DGP3 (exogeneity, and heteroskedasticity in time and cross-section di-
mension): the DGP of the exogenous regressor Xit is of form (52); het-
eroskedastic errors in time and cross-section dimension such that eit ∼
N(0, 1) and θit ∼ U(1, 4).

DGP4 (exogeneity, and serial correlation with cross-section heteroskedas-
ticity): the DGP of the exogenous regressor Xit is of form (52); homoscedas-
ticity and autocorrelation in the errors such that

eit = ρieit−1 + ζit, (53)

with ρi ∼ U(0, .5), ζit ∼ N(0, .5), and θit = 1 for all i and t.

DGP5 (endogeneity due to a hidden factor structure): Xit and eit are
correlated through the presence of a hidden factor structure:

eit = λift + εit and
Xit = 0.3αi + 0.3νt + 0.3λift + µit,

(54)

with λi, ft ∼ N(0, .5), θit = 1 for all i and t, and αi ∼ N(0, 1).

DGP6 (endogeneity due to a hidden approximate factor structure): Xit

and eit are correlated as in DGP5, but

εit = ρe,iεi,t−1 + ζe,it,
µit = ρµ,iµi,t−1 + ζµ,it,

(55)

with ζe,it, ζµ,it ∼ N(0, .5), ρe,i, ρµ,i ∼ U(0, .5), θit = 1 for all i and t, and
αi ∼ N(0, 1).

DGP7 (no-jumps, endogeneity, and hidden approximate factor structure):
the slope parameter does not suffer from structural breaks so that βt = 2
for all t; the regressor and the error are correlated through the presence of
an approximate factor structure as in DGP6.

Tables 1 -4 report the estimation results obtained by averaging the results
of 1000 replications. The third, sixth, and ninth columns in Tables 1-3
report the averages of the estimated number of jumps S̃ detected by (36)
for S = 1, 2, and 3, respectively. The MISE of our estimator is calculated by
1

1000

∑1000
r=1

(
1
T

∑T
t=1(β̂

r
t −βt)2), where β̂rt is the pointwise post-SAW estimate

of βt obtained in replication r. The fourth, seventh, and tenth columns in
Tables 1 -3 give, on average, the values of a criterion (hereafter called MDCJ)
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that describes the mean distance between the true jump locations and the
closest post-SAW detected jumps. The MDCJ criterion is calculated as
follows:

MDCJ =
1

S

S∑
j=1

min
l∈{1,...,S̃}

|τj − τ̃l|.

We use the R-package phtt to calculate LSDV, ILS, and KSS and plm to
calculatd GLS . The corresponding MSEs of LSDV, GLS, ILS, and KSS are
obtained by 1

1000

∑1000
r=1

(
β̂r(M)− β)2, where β̂r(M) is the estimate of β = β1 =

· · · = βT obtained in replication r by using method M = LSDV, ILS, and
KSS. The results are reported in Table 4.

DGP1
Nbr. of jumps S: 1 2 3

n T S̃ MDCJ MISE S̃ MDCJ MISE S̃ MDCJ MISE
30 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.008
60 33 1.0 0.000 0.001 2.0 0.000 0.004 3.0 0.000 0.008
120 33 1.0 0.000 0.001 2.0 0.000 0.004 3.0 0.000 0.007
300 33 1.0 0.000 0.001 2.0 0.000 0.003 3.0 0.000 0.007
30 65 1.0 0.000 0.001 2.1 0.000 0.001 3.1 0.000 0.002
60 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
120 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 1.0 0.000 0.000 2.1 0.000 0.000 3.1 0.000 0.002
60 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.000
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.000

DGP2
30 33 0.9 3.100 0.118 1.5 2.731 0.181 2.2 2.349 0.193
60 33 1.0 0.000 0.003 2.0 0.111 0.011 3.0 0.053 0.013
120 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.008
300 33 1.0 0.000 0.001 2.0 0.000 0.003 3.0 0.000 0.008
30 65 0.8 9.200 0.173 1.5 5.470 0.191 2.4 4.160 0.180
60 65 1.0 0.000 0.001 1.8 0.665 0.021 2.9 0.531 0.030
120 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 0.9 13.81 0.124 1.4 16.40 0.261 2.0 12.31 0.231
60 129 1.0 2.519 0.021 2.0 0.859 0.017 2.9 0.851 0.022
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

Table 1: Simulation results of the Monte Carlo experiments for DGP1-
DGP2. The entries are the averages of 1000 replications.

In our examined data configurations, the MISE of the post-SAW esti-
mator and the average of the estimated number of jumps behave properly
as both n and T become large as well as when T is fixed and only n be-
comes large. The method performs quite well in the benchmark case where
idiosyncratic errors are independent and identically distributed even when
n and T are relatively small (e.g., the combinations where n = 30 and/or
T = 33 in the first part of Table 1). In most of the examined cases, where
heteroskedasticity in the cross-section and time dimension and/or week se-
rial correlations exist, the method still behaves very well, in particular when
n is large (see results of DGP3-DGP4 in Tables 1 and 2). The quality of the
estimator seems to be independent of the number and the location of the
jumps (i.e., dyadic, for S = 1, and non-dyadic for S = 2, 3). Not surpris-
ingly, the jump selection method performs poorly when n is fixed and only
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DGP3
Nbr. of jumps S: 1 2 3

n T S̃ MDCJ MISE S̃ MDCJ MISE S̃ MDCJ MISE
30 33 0.9 3.000 0.117 1.5 2.730 0.180 2.3 2.347 0.190
60 33 1.0 0.000 0.003 2.0 0.110 0.014 3.0 0.053 0.016
120 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.008
300 33 1.0 0.000 0.001 2.0 0.000 0.003 3.0 0.000 0.008
30 65 0.7 9.300 0.170 1.5 5.470 0.191 2.4 4.160 0.181
60 65 1.0 0.000 0.001 1.9 0.660 0.025 2.9 0.533 0.031
120 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 0.9 13.80 0.124 1.3 16.41 0.260 2.0 12.37 0.235
60 129 1.0 2.520 0.023 2.0 0.860 0.016 2.9 0.853 0.023
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

DGP4
30 33 0.2 12.60 0.477 0.5 8.250 0.431 0.6 8.673 0.499
60 33 0.4 9.000 0.340 1.0 5.280 0.309 1.4 5.280 0.360
120 33 0.9 1.500 0.059 1.8 1.210 0.087 2.6 1.013 0.116
300 33 1.0 0.000 0.002 2.0 0.000 0.004 3.0 0.000 0.009
30 65 0.3 23.22 0.426 0.4 17.49 0.453 0.5 17.72 0.488
60 65 0.6 13.02 0.238 0.9 11.49 0.318 1.2 11.62 0.403
120 65 0.9 4.340 0.080 1.8 2.190 0.073 2.6 2.560 0.110
300 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.003
30 129 0.1 55.44 0.496 0.3 37.41 0.472 0.4 36.05 0.516
60 129 0.5 34.02 0.305 0.8 26.66 0.377 1.0 26.88 0.427
120 129 0.8 10.08 0.091 1.7 6.880 0.116 2.5 6.187 0.146
300 129 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.001

Table 2: Simulation results of the Monte Carlo experiments for DGP3-
DGP4. The entries are the averages of 1000 replications.

T is large. In such a case, the threshold under-estimates the true number of
jumps and the MDCJ increases with T . This effect vanishes properly as n
gets large.

Table 3 reports the results of our experiments when the regressors are
affected by an omitted factor structure in the error term. The proposed two-
step SAW procedure seems to perform very well even when heteroskedastic-
ity in the cross-section and time dimension and/or week serial correlations
are present.

The goal of examining DGP7 is to test whether SAW is also able to
detect the no-jump case. The results from Table 4 speak to this queston.
In the no-jump case our method is slightly inferior in terms of MSE than ILS
but better than LSDV, GLS, and KSS. Because LSDV and GLS neglect the
presence of the factor structure in the model and KSS is only appropriate
for factors that possess smooth patterns over time, the MSEs of these three
estimators are affected by a small bias that seems to persist even when n
and T get large.

The Monte Carlo experiments show that, in many configurations of the
data, our method performs very well even when the idiosyncratic errors are
weakly affected by serial-autocorrelation and/or heteroskedasticity, indepen-
dently of the number and locations of the jumps.
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DGP5
Nbr. of jumps S: 1 2 3

n T S̃ MDCJ MISE S̃ MDCJ MISE S̃ MDCJ MISE
30 33 0.8 4.100 0.187 1.3 3.230 0.250 2.1 3.367 0.291
60 33 1.0 0.000 0.004 2.0 0.119 0.017 3.0 0.058 0.020
120 33 1.0 0.000 0.003 2.0 0.000 0.007 3.0 0.000 0.010
300 33 1.0 0.000 0.002 2.0 0.000 0.002 3.0 0.000 0.009
30 65 0.7 9.700 0.210 1.4 5.976 0.210 2.4 4.860 0.211
60 65 1.0 0.000 0.002 1.9 0.690 0.031 2.9 0.539 0.038
120 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.002
300 65 1.0 0.000 0.000 2.0 0.000 0.001 3.0 0.000 0.002
30 129 0.8 19.80 0.224 1.2 21.41 0.361 2.0 19.37 0.315
60 129 1.0 2.611 0.053 2.0 0.952 0.017 2.8 1.153 0.033
120 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

DGP6
30 33 0.2 11.66 0.448 0.5 8.250 0.427 0.6 8.320 0.498
60 33 0.5 7.200 0.272 1.0 5.390 0.306 1.5 4.907 0.370
120 33 0.9 0.900 0.036 1.8 0.990 0.074 2.6 1.013 0.114
300 33 1.0 0.000 0.002 2.0 0.000 0.005 3.0 0.000 0.009
30 65 0.3 22.94 0.419 0.3 18.77 0.484 0.6 16.93 0.480
60 65 0.5 14.88 0.272 1.1 10.44 0.304 1.1 13.76 0.401
120 65 0.8 5.580 0.102 1.8 1.980 0.070 2.6 2.667 0.116
300 65 1.0 0.000 0.001 2.0 0.000 0.001 3.0 0.000 0.003
30 129 0.1 54.74 0.493 0.1 40.53 0.487 0.3 38.61 0.523
60 129 0.3 42.84 0.383 0.7 27.52 0.372 1.0 26.45 0.432
120 129 0.8 11.34 0.102 1.8 5.160 0.091 2.4 7.680 0.157
300 129 1.0 0.000 0.000 2.0 0.000 0.000 3.0 0.000 0.001

Table 3: Simulation results of experiments for DGP5-DGP6. The entries
are the averages of 1000 replications.

7 Application: Algorithmic Trading and Market
Quality

An issue of increasing debate, both academically and politically, is the im-
pact of algorithmic trading (AT) on standard measures of market quality
such as liquidity and volatility. Proponents, including many of the exchanges
themselves, argue that AT provides added liquidity to markets and is benefi-
cial to investors. Opponents instead caution that AT increases an investor’s
perception that an AT partner possesses an informational advantage and
thus may undermine investors’ beliefs that markets are in fact “fair”. Addi-
tionally, there are concerns that the benefits from AT are transient. That is,
AT provides “phantom” liquidity that my disappear at a moment’s notice.
Incidents such as the “flash crash” of May, 2010, although anectodal, do
nothing to alleviate these fears.

From a regulatory standpoint AT has received wide attention, both in
US markets and abroad. A number of initiatives have been put forth by
regulatory agencies. In 2012 the US Securities and Exchange Commission
(SEC) put forth rule 613 (“The Consolidated Audit Trail”), which requires
exchanges to essentially track the footprint of every order put into the sys-
tem. Similarly, the “Large Trader Reporting Rule”, put forth in 2011, im-
poses certain reporting requirements on large traders in order for the SEC
to monitor their trading patterns. Similar legislation has been proposed in
the European markets in the form of the Markets in Financial Instruments
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DGP7 (S = 0)
Method post-SAW LSDV GLS ILS KSS

n T S̃ MISE MSE MSE MSE MSE
30 33 0.0000 0.0062 0.0105 0.0148 0.0007 0.0104
60 33 0.0000 0.0041 0.0105 0.0142 0.0006 0.0101
120 33 0.0000 0.0012 0.0090 0.0125 0.0002 0.0085
300 33 0.0000 0.0004 0.0093 0.0128 0.0001 0.0090
30 65 0.0000 0.0039 0.0105 0.0135 0.0004 0.0099
60 65 0.0000 0.0015 0.0102 0.0130 0.0002 0.0101
120 65 0.0000 0.0005 0.0099 0.0126 0.0001 0.0098
300 65 0.0000 0.0001 0.0108 0.0137 0.0000 0.0108
30 129 0.0000 0.0015 0.0101 0.0129 0.0002 0.0102
60 129 0.0000 0.0008 0.0103 0.0127 0.0001 0.0104
120 129 0.0000 0.0002 0.0101 0.0125 0.0000 0.0101
300 129 0.0000 0.0000 0.0090 0.0112 0.0000 0.0090

Table 4: Simulation results of the Monte Carlo experiments for DGP7. The
entries are the averages of 1000 replications.

Directive (MiFiD II). An extensive discussion is presented in Shorter and
Miller (2014).

Given the scrutiny placed on AT, along with the uncertain effects, thor-
ough empirical analysis is required. Recent work examining the effects of
AT on market quality have generally found its presence to be beneficial in
the sense that standard measures of liquidity such as bid-ask spreads and
price-impact are negatively correlated with measures of AT. For example
Hendershott et al. (2011) find that, with the exception of the smallest quin-
tile of NYSE stocks, increases in AT are almost universally correlated with
decreases in quoted and effective spreads in the remaining quintiles. Has-
brouck and Saar (2013) find similarly compelling evidence using a measure
of AT constructed from order level data. A drawback of both approaches,
and more specifically of the standard panel regression approach, is that esti-
mates of the marginal effects of AT on spreads are necessarily averaged over
all possible states of the market. This is problematic from an asset pricing
perspective.

Of particular importance to the concept of liquidity is the timing of its
provision. The merits of added liquidity during stable market periods at the
expense of its draw back during periods of higher uncertainty are ambiguous
without a valid welfare analysis and can potentially leave investors worse off.
The issue of timing is particularly important for empirical work examining
the effects of AT on market quality. Samples are often constrained in size
due to limitations on the availability of data and computational concerns.
As noted by Hendershott et al. (2011), it may be because samples often
used do not cover large enough periods of market turbulence that detection
of possible negative effects of AT on market quality have not been empiri-
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cally documented. Additionally, standard sub-sample analysis requires the
econometrician to diagnose market conditions as well their start and end
dates, in effect imposing their own prior beliefs on the factors that might
cause variation in the marginal effects.

In order to address these many issues that hinge on the stability of the
relationship between algorithmic trading and market quality, we propose
the use of a new estimator to automatically detect jumps in such a rela-
tionship. Specifically, in the context of a two-way panel model, we provide
estimates of the marginal effects of AT on various liquidity measures while
allowing those effects to change at unknown times over the sample period.
The estimation procedure automatically detects the unknown breakpoints
and provides point estimates of marginal effects at all breakpoints. This
methodology alleviates concerns about ad-hoc sub-sample selection. It also
provides key insight into the dynamics between AT and liquidity through
the analysis of periods where the effects vary. Furthermore, a more careful
evaluation of the breakpoints may provide valuable insight for future studies
(both theoretical and empirical) and policy recommendations regarding the
regulation of trading in financial markets.

7.1 Liquidity and Asset Pricing

Before discussing the effects of liquidity on asset pricing, we first examine
conventional tests that assume constant parameters. In this simple example,
we consider a regression of a measure of market quality on an AT proxy for
an individual stock using the following model:

MQt = α+ATtβ + et, (56)

where the time index t ∈ {1, . . . , T}. If the slope parameter is time varying
then β in (56) presents only the time average of the true parameter, say
βt. In this case the conventional estimator of β is consistent only under the
assumption

∑T
t=1AT

2
t (βt − β)/T

p−→ 0, as T gets large. Even when such
a requirement is satisfied, the average effect is not the correct measure to
consider when the question is whether AT is beneficial to market quality, as
we explain below.

An asset’s expected return (i.e., the risk premium) is a function of its
covariance with the stochastic discount factor (SDF). While the form of the
SDF depends on the asset pricing model one is considering, it can in general
be thought of as the ratio of the marginal value of wealth between time t+1
and t. Therefore, holding other things constant, if an asset pays off more
in states in which the marginal value of wealth is relatively low and less in
states where the marginal value of wealth is relatively high then a rational
investor would discount the price of that asset more heavily. Thus, if an
asset’s return contains a stochastic liquidity component then its covariance
with the SDF can have a substantial impact on pricing.
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The model of Acharya and Pedersen (2005) is particularly relevant as
it exemplifies the many avenues through which time varying liquidity can
affect expected returns. Using an overlapping generations model they de-
compose conditional security returns into five components: one related to
the expected level of illiquidity and four others related to terms involving
the covariances between the market return, market illiquidity, asset returns
and asset illiquidity. They show that asset returns are increasing in the
covariance between portfolio illiquidity and market illiquidity and decreas-
ing in the covariance between asset illiquidity and the market return. A
consequence of this is that if AT intensifies these liquidity dynamics for a
particular asset then the effect will be to increase the risk premium asso-
ciated with that security. Increased risk premiums represent higher costs
of capital for firms and thus increased AT can potentially decrease firm in-
vestment (relative to a market with no AT) through its effect on liquidity
dynamics.

7.2 Data

Our sample consists of a balanced panel of stocks whose primary exchange is
the New York Stock Exchange (NYSE) and covers the calendar period 2003−
2008. To build measures of market quality, we use the NYSE Trade and
Quotation Database (TAQ) provided by Wharton Research Data Services
(WRDS) to collect intra-day data on securities. We construct various daily
liquidity measures and then average those over the course of the month to
construct our sample. This allows us to compare our findings with results
that have appeared in the literature and that are also based on monthly data.
The full sample consists of 378 firms over 71 months for each firm.2 We
merge the TAQ data with information on price and shares outstanding from
the Center for Research in Security Prices (CRSP). The choice of this sample
period reflects our desire to include both relatively stable and turbulent
market regimes. We are limited in our choice of sample periods by the
fact that AT is a recent phenomenon and that our estimation procedure
requires a balanced panel. We additionally filter out a number of firms due
to infrequent intra-day data.

7.2.1 The Algorithmic Trading Proxy

Our AT proxy is motivated by Hendershott et al. (2011) and Boehmer et al.
(2012), who note that AT is generally associated with an increase in order

2One month is lost due to the use of lagged market quality measures in the regression
specification. Furthermore, due to the sample size being very close to a dyadic integer we
utilize only the final 64 months when applying the SAW estimator to our data set. As is
clear in the analysis, all evidence of structural breaks occurs toward the end of the sample
and thus we view this as a reasonable approach.
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activity at smaller dollar volumes. Thus the proxy we consider is the neg-
ative of dollar volume (in hundreds of dollars, $Volit) over time period t
divided by total order activity over time period t. We define order activity
as the sum of trades (Trit) and updates to the best prevailing bid and offer
(qit) on the security’s primary exchange:

ATit = − $Volit
Trit + qit

.

An increase in ATit represents a decrease in the average dollar volume
per instance of order activity and represents an increase in the AT in the
particular security. For example, an increase of 1 unit of ATit represents a
decrease of $100 of trading volume associated with each instance of order
activity (trade or quote update).

Our proxy, like that in Boehmer et al. (2012), differs from the proxy
in Hendershott et al. (2011) since the latter have access to the full order
book of market makers whereas we only have access to the trades and the
best prevailing bid and offers of market makers through TAQ. We appeal to
the same argument as Boehmer et al. (2012) in that many AT strategies are
generally executed at the best bid and offer rather than behind it. Therefore,
we feel our proxy is in general representative of the full order book.

7.2.2 Market Quality Measures

We consider several common measures of market quality to assess the impact
of AT on markets for individual securities.

Proportional Quoted Spread

The proportional quoted spread (PQSit) measures the quoted cost as a per-
centage of the price (Bid-Offer midpoint) of executing a trade in security i
and is defined as,

PQSit = 100

(
Ofrit −Bidit

0.5(Ofrit +Bidit)

)
.

We multiply by 100 in order to place this metric in terms of percentage
points. We aggregate this metric to a monthly quantity by computing a
share volume-weighted average over the course of each month. An increase
in PQSit represents a decrease in the amount of liquidity in the market for
security i due to increased execution costs.

Proportional Effective Spread

The proportional effective spread (PESit) is quite similar to (PQSit) but
accommodates potentially hidden liquidity or stale quotes by evaluating the
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actual execution costs of a trade. It is defined as,

PESit = 100

(
|Pit −Mit|

Mit

)
,

where Pit is the price paid for security i at time t and Mit is the midpoint
of the prevailing bid and ask quotes for security i at time t. Thus, PESit is
the actual execution cost associated with every trade. We again aggregate
this measure up to a monthly quantity in the same way as we do for quoted
spreads. Like PQSit, PESit is also in terms of percentage points. An increase
in PESit represents a decrease in the amount of liquidity in the market for
security i due to increased execution costs.

Measures of Volatility

We also consider two different measures of price volatility in security i over
time period t. The first is the daily high-low price range given by,

H-Lit = 100

(
maxτ∈t(Pit)−minτ∈t(Pit)

Pit

)
,

which represents the extreme price disparity over the course of a trading
day. We also consider the realized variance of returns over each day com-
puted using log percentage (i.e. ln(pi,t/pi,t−1)× 100) returns over 5-minute
intervals:

RVit =

(∑
τ∈t

r2iτ

)
.

Realized variance is a nonparametric estimator of the integrated variance
over the course of a trading day (see, for example, Andersen et al. (2003)).
We aggregate both measures up to a monthly level by averaging over the
entire month. We additionally represent each in terms of percentages, i.e.
H−Lit is the price range as a percentage of the daily closing price and RVit
is an estimate of the integrated variance of log returns in percentages. Both
measures represent a measure of the price dispersion over the course of the
trading month.

7.2.3 Additional Control Variables

While we attempt to determine the effect that our AT proxy has on measures
of market quality we include in all our regressions a vector of control variables
to isolate the effects of AT independent of the state of the market. We lag the
control variables by one month so that they represent the state of the market
at the beginning of the trading month in question. The control variables
are: (1) Share Turnover (STit), which is the number of shares traded over
the course of a day in a particular stock relative to the total amount of
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shares outstanding; (2) Inverse price, which represents transaction costs due
to the fact that the minimum tick size is 1 cent; (3) Log of the market
value of equity to accommodate effects associated with smaller securities;
(4) Daily price range to accommodate any effects from large price swings
in the previous month. To avoid adding lagged dependent variables in the
model, for regressions where the daily price range is the dependent variable
we replace it in the vector of controls with the previous month’s realized
variance. We additionally include security and time period fixed effects to
proxy for any time period or security related effects not captured by our
included variables.

Potential Endogeneity Issue

We assume a linear relationship between our measures of market quality,
our proxy for algorithmic trading and our control variables,

MQit = µ+ αi + γt +ATitβt +X ′itδ + εit. (57)

The key distinction between the model considered here and others in the
literature is that we allow the marginal effect that AT has on market qual-
ity to be time varying. Absent a theoretical model of AT, an issue on which
the literature is still somewhat agnostic, it is uncertain whether AT strate-
gies attempt to time shocks to market quality. This creates a potential
problem of endogeneity with our AT proxy. That is, when estimating the
regression equation (57) our estimates may be biased (E(ATiteit) 6= 0) and
inconsistent.

To overcome this potential issue we use the approach of Hasbrouck and
Saar (2013) (albeit with different variables) and choose as an instrument
the average value of algorithmic trading over all other firms not in the same
industry as firm i. To this end, we define industry groups using 4-digit
SIC codes and define these new variables as AT−IND,it. The use of this
instrument requires some commonality in the level of AT across all stocks
that is sufficient to pick up exogenous variation. It further rules out trading
strategies by ATs across firms in different industry groups. Lacking much
knowledge of the algorithms used by AT firms we view this assumption as
reasonable. As noted by Hasbrouck and Saar (2013), it is unlikely that AT
firms implement cross-stock trading strategies for a particular firm with the
entire universe of firms (or in our case the other 377). To the extent that
AT firms do implement these cross-stock strategies across industries, their
effect on the average is likely to be marginal.

To estimate the model we use a two-stage approach and first fit the
regression model,

ATit = ai + gt + bAT−IND,it + dWit + εit (58)
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to obtain an instrument, Zit, for ATit given by the fitted values from (58),
i.e., Zit := ÂTit = âi + ĝt + b̂AT−IND,it + d̂Wit, where âi, ĝt, b̂, and d̂ are
the conventional estimates of ai, gt, b, and d. We then carry out the second
stage regression using equation (57) using the estimator discussed in Section
3.3. For comparison purposes, we additionally apply the conventional panel
data model assuming a constant slope parameter, i.e., β1 = β2 = · · · = βT .

7.3 Results

Table 5 presents the results from a baseline model that assumes the slope
parameters are constant over time.3 These results are largely consistent with
previous studies that find a positive (in terms of welfare) average relationship
between AT and measures of market quality over the time period considered.
The coefficient estimates on the AT proxy are negative and significant for
all four measures of market quality that we consider. That is, increases in
AT generally reduce both of the spread measures and both of the variance
measures we consider. As for as the direction of the effect, differences in our
proxies and choice of instruments do not seem to reach conclusions that are
at variance with the prior literature.

To gauge the size of this effect we note that the within-standard deviation
of our AT proxy, after being scaled by 100, is 0.18. Combining this with the
coefficient estimates from Table 5, this implies that a one standard deviation
increase in AT results in a reduction of quoted spreads (effective spreads) of
approximately 0.002% (0.001%). On an absolute level these effects are small.
For example, given a hypothetical stock with an initial price of $100, a one
standard deviation increase in AT would reduce the quoted spread by less
than a penny.4 These results differ from those in Hendershott et al. (2011).
We attribute this to a combination of the differences in our AT proxies
and instrument as well as our inclusion of a more recent sample period. One
possible explanation is that the initial increase in AT during its inception has
been far larger in terms of effects than subsequent increases. For the variance
measures, a one standard deviation increase in our AT proxy results in a
decrease in the proportional daily high-low spread of approximately 0.25%
and a decrease in realized variance associated with percentage log returns of
approximately 0.12 (or equivalently a reduction in realized daily volatility
of approximately 0.35%).

From a welfare perspective the magnitude of the effect is important. As
mentioned above and further investigated below, if AT amplifies liquidity
dynamics then it will increase the liquidity risk in a market. There is ample
evidence that liquidity risk is priced and thus this would result in a higher
required return for stocks trading in that market and a corresponding higher

3For the purpose of readability we divide the AT variable by 100 to reduce trailing
zeros after the decimal.

4It should be noted that this is technically impossible.
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cost of capital. Because of this, any benefit in terms of increased liquidity on
average, needs to be evaluated against the costs associated with increased
variation.

The coefficients on the control variables are also generally in line with
what we would expect. The log of market equity is negatively related to
both spreads and the high-low price range variable. This is expected given
that smaller firms typically have a smaller group of potential investors and
are likely to be less liquid. It is also consistent with previous results. We do
note that we find a positive and statistically significant relationship between
market equity and realized variance. Our market equity variable may be
picking up persistence in volatility since we do not consider a dynamic panel
setting in this empirical exercise and thus do not control for persistence in
the variance term. Although ideally we would include the lag of realized
variance as a regressor, as mentioned above, we attempt to avoid a dynamic
panel setting. We proxy for this using the lagged value of the price range
variable, but we note that this may not fully compensate for the exclusion.
The remaining results for the control variables fit with prior research and
theory. Higher share turnover, smaller inverse prices (i.e., higher prices) and
lower variance all increase liquidity.

Tables 6 through 9 present the results when we allow the parameter to
jump discretely over time. The coefficient estimates in Tables 6 through 9
represent the size of the estimated jump in the coefficient and a Chow-type
test detailed in Appendix B. Figures 4 through 6 plot both the estimated
post-SAW coefficients and the results from period by period cross-sectional
regressions.

Our first main finding is that the effect of AT on our measures of market
quality is constant for the majority of the sample (the period prior to the
financial crisis). This was a relatively placid period for equity markets, and
the lack of time varying effects accords with our prior belief that structural
breaks in the marginal effect are likely to occur during periods of turmoil.
Of note is that the estimated coefficients of the marginal effect of AT on the
two spread measures (PES and PQS) over this stable period are positive,
however they are both quite small in terms of economic magnitude and
statistically insignificant (nor reported here).

The 2007-2008 period covers the financial crisis, a time during which
liquidity in many markets tightened substantially. During the financial crisis
period we find significant evidence of both positive and negative jumps in the
coefficient on AT. For the two spread measures we find evidence of two large
positive jumps in the coefficients in April and September/October of 2008
and other smaller jumps around those two time periods. A positive jump in
the coefficient represents a reduction in the benefit of AT on spreads and,
potentially, a reversal in its effects on spreads. Such is the case for the two
large positive jumps mentioned above. We find that during these two months
increases in AT lead to an increase in spreads and thus transacting in the
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securities with high AT is, other things being equal, costlier than in low AT
securities. April and September/October of 2008 represent two particularly
volatile periods for equity markets (and markets in general) in the US. In
April markets were still rebounding from the bailout of Bear Stearns and
its eventual sale to JP Morgan. These events occurred during a period
when the exposure of many banks to US housing markets through various
structured financial products was beginning to be recognized by investors.
Similarly, the failure of Lehman Brothers in September was another event
that disquieted the financial markets.

The results for our variance measures are similar, as we also find evidence
of both positive and negative jumps during the 2007-2008 period. Of note
is that for realized variance we find the jumps in general to be beneficial for
investors. That is, we find that increases in AT cause a larger reduction in
realized variance. As mentioned above, some caution should be taken with
respect to the interpretation of these results due to the fact that variance is
generally found to be strongly auto-correlated.

A potential explanation for the variation in the marginal effect of AT is
the presence of increased uncertainty. From both a valuation and a regu-
latory/policy perspective, the periods following large, unpredictable shocks
to asset markets can be associated with heightened uncertainty among in-
vestors. If investors fear that algorithmic traders possess an informational
advantage then it would be precisely during these periods when an increase
in AT would cause investors to be most at risk. Although a model of the
dynamic effects of AT and uncertainty is beyond the scope of this pasper,
our results clearly point to a time varying relationship between the effects
of AT on various measures of market quality.
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Dependent Variable ÂTit ln(ME)it−1 T/Oit−1 1/Pit−1 H-Lit−1 RVit−1
PQSit Coef. -0.013 -0.003 0.027 0.619 0.002

t-value -3.61 -2.65 0.73 15.38 5.67

PESit Coef. -0.006 -0.001 -0.077 0.517 0.004
t-value -3.62 -1.83 -3.42 18.51 16.96

RVit Coef. -0.691 0.046 -1.575 7.25 0.415
t-value -12.73 2.39 -2.45 10.19 44.46

H-Lit Coef. -1.404 -0.038 -6.15 7.88 1.151
t-value -11.6 -1.04 -4.71 6.04 35.78

N=378 T=71
This table shows the results of the 2SLS panel regression of our measures of market

quality on our AT proxy. The dependent variables are proportional quoted spread,

proportional effective spread, daily high-low price range and daily realized variance. In

addition to AT, additional regressors included as control variables are the previous

month’s log of market Cap (ln(ME)), share turnover (T/O), inverse price (1/P) and

high-low price range (H-L). When the dependent variable is the current month’s

high-low price range, last month’s value of realized variance (RV) is used instead to

avoid a dynamic panel model. Standard errors are corrected for heteroskedasticity.

Table 5: Instrumental variable panel data model with constant parameters

2004 2005 2006 2007 2008 2009

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Pointwise effect of the algorithmic trading on PQSVW

dates

be
ta

tP
Q

S
[, 

1]

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

● ●

●

● ● ●

● ●

●

°

°

negative effects

positive effects

−
0.

00
15

−
0.

00
10

−
0.

00
05

0.
00

00
0.

00
05

0.
00

10
0.

00
15
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Results obtained by using wavelet shrinkage method 
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Figure 3: Time varying effect of algorithmic trading on the proportional
quoted spread.
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Coef. Z-value p-value
on the difference

from 2003-09-01 to 2008-02-01 6.49e-05 - - -

from 2008-03-01 to 2008-03-01 6.51e-04 1.650 0.0998 .

from 2008-04-01 to 2008-04-01 4.13e-03 6.420 1.36e-10 ***

from 2008-05-01 to 2008-08-01 7.66e-04 -7.420 1.16e-13 ***

from 2008-09-01 to 2008-10-01 1.03e-03 0.932 0.3510

from 2008-11-01 to 2008-12-01 -1.46e-04 -4.620 3.83e-06 ***
This table presents the Post-SAW estimates for the parameters and the results of tests

for jump significance for the coefficient of AT when the dependent variable is PQS. The

column labeled Coef. is the Post-SAW estimate for the parameter and the Z statistic

represents a test of the significance of the change from the previous time period (set

equal to 0 for the first period). All tests are asymptotic. *** denotes significance at the

0.1% level, ** denotes significance at the 1% level, * denotes significance at the 5% level

and . denotes significance at the 10% level.

Table 6: Post-wavelet estimates for the proportional quoted spread.
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Figure 4: Time varying effect of algorithmic trading on the proportional
effective spread.
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Coef. Z-value p-value
on the difference

from 2003-09-01 to 2007-08-01 9.06e-06 - -

from 2007-09-01 to 2007-12-01 6.73e-04 3.750 0.000176 ***

from 2008-01-01 to 2008-02-01 1.35e-04 -2.000 0.045800 *

from 2008-03-01 to 2008-03-01 5.31e-04 1.160 0.248000

from 2008-04-01 to 2008-04-01 4.19e-03 10.700 < 2.2e-16 ***

from 2008-05-01 to 2008-08-01 4.15e-04 -15.600 < 2.2e-16 ***

from 2008-09-01 to 2008-09-01 -1.74e-03 -7.540 4.77e-14 ***

from 2008-10-01 to 2008-10-01 1.79e-03 11.700 < 2.2e-16 ***

from 2008-11-01 to 2008-12-01 3.55e-06 -9.610 < 2.2e-16 ***
This table presents the Post-SAW estimates for the parameters and the results of tests

for jump significance for the coefficient of AT when the dependent variable is PES. The

column labeled Coef. is the Post-SAW estimate for the parameter and the Z statistic

represents a test of the significance of the change from the previous time period (set

equal to 0 for the first period). All tests are asymptotic. *** denotes significance at the

0.1% level, ** denotes significance at the 1% level, * denotes significance at the 5% level

and . denotes significance at the 10% level.

Table 7: Post-wavelet estimates for the proportional effective spread.
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Coef. Z-value p-value
on the difference

from 2003-09-01 to 2007-06-01 -0.017100 - - -

from 2007-07-01 to 2007-07-01 -0.048500 -1.08 0.28200

from 2007-08-01 to 2007-08-01 -0.154000 -2.68 0.00745 **

from 2007-09-01 to 2008-08-01 -0.012400 5.23 1.65e-07 ***

from 2008-09-01 to 2008-09-01 -0.107000 -4.40 1.07e-05 ***

from 2008-10-01 to 2008-10-01 -0.000913 4.59 4.33e-06 ***

from 2008-11-01 to 2008-12-01 -0.021400 -1.60 0.11000
This table presents the Post-SAW estimates for the parameters and the results of tests

for jump significance for the coefficient of AT when the dependent variable is H − L.

The column labeled Coef. is the Post-SAW estimate for the parameter and the Z

statistic represents a test of the significance of the change from the previous time period

(set equal to 0 for the first period). All tests are asymptotic. *** denotes significance at

the 0.1% level, ** denotes significance at the 1% level, * denotes significance at the 5%

level and . denotes significance at the 10% level.

Table 8: Post-wavelet estimates for the daily high-low price range.
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Figure 5: Time varying effect of algorithmic trading on the daily high-low
price range.
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Table 9: Post-wavelet estimates for the realized variance.

Coef. Z-value p-value
on the difference

from 2003-09-01 to 2008-08-01 -0.008080 -14.20 < 2.2e-16 ***

from 2008-09-01 to 2008-09-01 -0.063100 -5.09 3.57e-07 ***

from 2008-10-01 to 2008-10-01 0.000888 5.29 1.21e-07 ***

from 2008-11-01 to 2008-12-01 -0.007830 -1.26 0.208
This table presents the Post-SAW estimates for the parameters and the results of tests

for jump significance for the coefficient of AT when the dependent variable is RV . The

column labeled Coef. is the Post-SAW estimate for the parameter and the Z statistic

represents a test of the significance of the change from the previous time period (set

equal to 0 for the first period). All tests are asymptotic. *** denotes significance at the

0.1% level, ** denotes significance at the 1% level, * denotes significance at the 5% level

and . denotes significance at the 10% level.
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Figure 6: Time varying effect of algorithmic trading on the realized variance.
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8 Conclusion

This paper generalizes existing panel model specifications in which the slope
parameters are either constant over time or display time heterogeneity. We
allow for multiple structural changes that can occur at unknown date points
and may affect each slope parameter separately. Consistency under weak
forms of dependency and heteroscedasticity in the idiosyncratic errors is
established and convergence rates are derived. Our empirical vehicle for
highlighting this new methodology addresses the stability of the relation-
ship between Algorithmic Trading (AT) and Market Quality (MQ). We find
evidence that the relationship between AT and MQ was disrupted during the
time between 2007 and 2008. This period coincides with the beginning of
the subprime crisis in the US market and the bankruptcy of the big financial
services firm Lehman Brothers.
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A Theoretical Results and Proofs

A.1 Proofs of Section 2

Lemma 3 Let T = 2L−1 for some integer L ≥ 2 and β = (β1, . . . , βT )
′ ∈

RT a vector that possesses exactly one jump at τ ∈ {1, . . . , T} such that

βt =

{
βτ for t ∈ {1, . . . , τ}
βτ+1 6= βτ for t ∈ {τ + 1, . . . , T}.

Let wlk(t) be defined as (8) and hlk(t) as (9), where a1,1, al,2k−1 and al,2k are
positive real values for all l ∈ {1, . . . , L}, and k ∈ {1, . . . ,Kl}. There then
exists unique lτ non-zero coefficients {blkl |lτ ≤ L}, where kl ∈ {1, . . . ,Kl},
such that

βt =

lτ∑
l=1

wlkl(t)blkl .

Proof of Lemma 3: To prove the proposition, we show that βt can
be reconstructed by using at most L wavelet basis if it processes exactly one
jump, say at τ ∈ {1, . . . , T}. To simplify the exposition, we re-define the
wavelet basis wl,k(t), for l > 1 as follows:

wl,k(t) = a∗l,2k−1h
∗
l,2k−1(t)− a∗l,2kh∗l,2k(t),

where

h∗l,k(t) =

{
1 for t ∈

{(
2L−l−1(k − 1) + 1

)
, . . . ,

(
2L−l−1k

)}
0 else.

This is equivalent to (8). The unique difference is that the coefficients a∗l,2k−1
and a∗l,2k are scaled by

√
2l in order to simplify the construction of h∗l,k(t)

and let it be either 1 or 0.
Note that by construction, there exists a unique lτ ∈ {2, . . . , L} and a

unique klτ ∈ {1, . . . , 2lτ−2} such that

wlτklτ (τ) = a∗lτ ,2klτ−1
and wlτklτ (τ + 1) = −a∗lτ ,2klτ .

Moreover, there exists in each level l ∈ {1, . . . , L|l < lτ} at most one basis
wlkl(t) that satisfies the following condition:

wlkl(τ) = wl,kl(τ + 1) 6= 0.

Define the time interval Il, for each l = 1, . . . , lτ , as follows:

Il = {t ∈ {1, . . . , T}|wl,kl(t) 6= 0}.
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such that
lτ⋃
l=1

Il = {1, . . . , T}

and
Ilτ ⊂ Ilτ−1 ⊂ · · · ⊂ I2 ⊆ I1 = {1, . . . , T}.

We now begin with the thinnest interval Ilτ that contains the jump.
Define

β
(lτ )
t =


βt = βτ if t ≤ τ and t ∈ Ilτ ∩ {t|t ≤ τ}
βt = βτ+1 if t > τ and t ∈ Ilτ ∩ {t|t > τ}
0 else.

Because βτ 6= βτ+1 and a∗lτ ,2klτ−1
, a∗lτ ,2klτ

> 0, there exists a non-zero co-

efficient blτ ,klτ = βτ−βτ+1

a∗lτ ,2klτ−1+a
∗
lτ ,2klτ

and a constant β(lτ ) 6= {βτ , βτ+1} such

that

β
(lτ )
t =


βτ = β(lτ ) + a∗lτ ,2klτ−1

blτ ,klτ if t ≤ τ and t ∈ Ilτ
βτ+1 = β(lτ ) − a∗lτ ,2klτ blτ ,klτ if t > and t ∈ Ilτ
0 else.

(59)

Using the definition of wlk(t), we can rewrite (59) as

β
(lτ )
t =

{
βt = β(lτ ) + wlτ ,klτ (t)blτ ,klτ if t ∈ Ilτ
0 else.

(60)

Consider the second thinnest interval Ilτ−1 . Let

β
(lτ−1)
t =


βt if t ∈ Ilτ−1 \ Ilτ
β(lτ ) if t ∈ Ilτ
0 else.

Note that βt is constant over Ilτ−1 \ Ilτ ; it can be either βτ or βτ+1. Now,

because β(lτ ) 6= {βτ , βτ+1}, we can determine a second unique non-zero
coefficient blτ−1,klτ−1

and a second unique constant β(lτ−1) 6= {βτ , βτ+1}
such that

β
(lτ−1)
t =


β(lτ−1) + wlτ−1,klτ−1

(t)blτ−1,klτ−1
= βt if t ∈ Ilτ−1 \ Ilτ

β(lτ−1) + wlτ−1,klτ−1
(t)blτ−1,klτ−1

= β(lτ ) if t ∈ Ilτ
0 else.

Because wlτ ,klτ (t) = 0 for all t /∈ Ilτ−1 and all t ∈ Ilτ−1 \ Ilτ , adding
wlτ ,klτ (t)bl,kl on both sides, gives

β
(lτ−1)
t + wlτ ,klτ (t)bl,kl =


βt + wlτ ,klτ (t)bl,kl if t ∈ Ilτ−1 \ Ilτ
β(lτ ) + wlτ ,klτ (t)bl,kl if t ∈ Ilτ
0 else.
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Moreover, because β(lτ ) + wlτ ,klτ (t)bl,kl = βt for all t ∈ Ilτ , we can write

β
(lτ−1)
t +wlτ ,klτ (t)bl,kl =

{
β(lτ−1) +

∑lτ
l=lτ−1wl,kl(t)bl,kl = βt if t ∈ Ilτ−1

0 else.

Replacing β
(tτ−1)
t by β

(tτ−2)
t and proceeding with the recursion until β

(lτ−l)
t ,

for l ∈ {2, . . . , lτ}, we end up with

β
(lτ−l)
t +wlτ−l+1,klτ−l+1

(t)blτ−l+1,klτ−l+1
=

{
β(lτ−l) +

∑lτ
s=lτ−l ws,ks(t)bs,ks = βt if t ∈ Ilτ−l

0 else.
(61)

where β(lτ−l) is constant over Ilτ−l. Finally, from (61), we can infer that,
for all t ∈ I1 = {1, . . . , T},

βt = β(1) +

lτ∑
l=2

wl,kl(t)bl,kl ∀t ∈ {1, . . . , T}.

Because β(1) is a constant and w11(t) = a11 6= 0, ∀t ∈ {1, . . . , T}, we can
express βt in terms of lτ ≤ L basis such that

βt =

lτ∑
l=1

wl,kl(t)bl,kl ∀t ∈ {1, . . . , T}.

This completes the proof. �

Proof of Proposition 1: To prove the assertion, we expand the original
vector in a series of S vectors so that each new vector contains only one jump,
and make use of Proposition 3. Let β be a T × 1 vector such that

β =



β1
β2
...
βτ1
βτ1+1
...
βτ2
βτ2+1
...
βτS+1
...
βT



=



βτ1
βτ1
...
βτ1
βτ2
...
βτ2
βτ3
...
βτS+1

...
βτS+1


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where {τs ∈ {1, . . . , T}|τ1 < . . . < τS}. We can transform β in a series of
S + 1 Vectors, βτ1 , . . . , βτS as follows:

βτ1
...
βτ1
βτ2
...
βτ2
βτ3
...
βτS
βτS+1

...
βτS+1


︸ ︷︷ ︸

β

=



βτ1 − βτ2
...
βτ1 − βτ2
0
...
0
0
...
0
0
...
0


︸ ︷︷ ︸

βτ1

+ . . .+



βτS−1 − βτS
...
βτS−1 − βτS
βτS−1 − βτS
...
βτS−1 − βτS
βτS−1 − βτS
...
0
0
...
0


︸ ︷︷ ︸

βτS

+



βτS
...
βτS
βτS
...
βτS
βτS
...
βτS
βτS+1

...
βτS+1


︸ ︷︷ ︸

βτS+1

,

so that each new vector processes exactly one jump (except βτS+1, which

is constant over all). From Proposition 3, we know that each vector βτs ,
s = 1, . . . , S, has a unique expansion of the form

βτs =
L∑
l=1

Kl∑
k=1

wlkb
(s)
lk

with at most L non-zero coefficients in {b(s)lk }l=1,...,L;k=1,...,Kl , where

Kl =

{
1 if l = 1
2l−2 if l = 2, . . . , L.

The fact that β =
∑S+1

s=1 βτs completes the proof. �

Proposition 3 If a1,1, al,2k−1 and al,2k are chosen for each l ∈ {1, . . . , L}
and k ∈ {1, . . . ,Kl} such that

(i) a2
l,2k−1

1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k−1(t) + a2

l,2k
1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k(t) = 1,

(ii) al,2k−1
1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k−1(t) − al,2k

1
nT

∑n
i=1

∑T
t=1 XitZith

2
l,2k(t) = 0

(iii) a2
1,1

1
nT

∑n
i=1

∑T
t=1 XitZit = 1

then (a) and (b) are satisfied for all l, l
′ ∈ {1, . . . , L}, k,∈ {1, . . . ,Kl}, and

k
′
,∈ {1, . . . ,Kl′ |l 6= l

′}, or k, k
′
,∈ {1, . . . ,Kl|k 6= k

′
; l = l

′}.
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Proof of Proposition 3: To prove that (i)− (iii) imply the orthonor-
mality conditions (a) and (b), for all l, l

′ ∈ {1, . . . , L}, k ∈ {1, . . . ,Kl}, and
k
′ ∈ {1, . . . ,Kl′}, it is sufficient to verify the following three statements:

• (S.1): condition (b) holds if l = l
′

and k
′ 6= k.

• (S.2): condition (b) holds if (ii) is satisfied for all l
′
< l, and

• (S.3): condition (a) holds if (i) and (iii) are satisfied for all (l, k) =
(l
′
, k
′
).

Before checking S.1-S.3, we begin with examining the product Zl,k,itXl′ ,k′ ,it.
If (l, k) 6= (l

′
, k
′
),

Zl,k,itXl′ ,k′ ,it = Zit,lkZit,l′k′

= XitZit
(
wlk(t)wl′k′ (t)

)
= XitZit (al,2k−1hl,2k−1(t)− al,2khl,2k(t))

(
al′ ,2k′−1hl,2k′−1(t)− al′ ,2k′hl′ ,2k′ (t)

)
= XitZit

(
al,2k−1al′ ,2k′−1hl,2k−1(t)hl′ ,2k′−1(t)− al,2k−1al′ ,2k′hl,2k−1(t)hl′ ,2k′ (t)

−al,2kal′ ,2k′−1hl,2k(t)hl′ ,2k′−1(t) + al,2kal′ ,2k′hl,2k(t)hl′ ,2k′ (t)
)

If (l, k) = (l
′
, k
′
),

Zl,k,itXl,k,it = XitZit (wlk(t))
2

= XitZit (al,2k−1hl,2k−1(t)− al,2khl,2k(t))2

= XitZit

a2l,2k−1h2l,2k−1(t) + a2l,2kh
2
l,2k(t)− 2al,2k−1al,2k hl,2k−1(t)hl,2k(t)︸ ︷︷ ︸

0


= XitZit

(
a2l,2k−1h

2
l,2k−1(t) + a2l,2kh

2
l,2k(t)

)
,

(62)
The product hl,2k−1(t)hl,2k(t) (in the third line) is zero because hl,2k(t) = 0,
for all t ∈

{(
(2k − 2)2L−l + 1

)
, . . . ,

(
(2k − 1)2L−l

)}
, hl,2k−1(t) = 0, for all

t ∈
{(

(2k − 1)2L−l + 1
)
, . . . ,

(
2k2L−l

)}
and both hl,2k(t) = hl,2k−1(t) = 0

else.
Consider (S.1). If l = l

′
, and k

′ 6= k, we have, for all t ∈ {1, . . . , T},

Zl,k,itXl′ ,k′ ,it = ZitXit

al,2k−1al,2k′−1 hl,2k−1(t)hl,2k′−1(t)︸ ︷︷ ︸
=0

−al,2k−1al,2k′ hl,2k−1(t)hl,2k′ (t)︸ ︷︷ ︸
=0

−al,2kal,2k′−1 hl,2k(t)hl,2k′−1(t)︸ ︷︷ ︸
=0

+al,2kal,2k′ hl,2k(t)hl,2k′ (t)︸ ︷︷ ︸
=0


= 0
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This implies (b), for all l, l
′ ∈ {2, . . . , L|l = l

′} and k, k
′ ∈ {1, . . . , 2l−2|k′ 6=

k}.
Consider (S.2). If l

′
< l, we have by construction either

Zl,k,itXl′ ,k′ ,it = ZitXital′ ,2k′hl′ ,2k′ (t) (al,2k−1hl,2k−1(t)− al,2khl,2k(t))
= al′ ,2k′

(
ZitXital,2k−1hl,2k−1(t)hl′ ,2k′ (t)− ZitXital,2khl,2k(t)hl′ ,2k′ (t)

)
or

Zl,k,itXl′ ,k′ ,it = ZitXital′ ,2k′−1hl′ ,2k′−1(t) (al,2k−1hl,2k−1(t)− al,2khl,2k(t))
= al′ ,2k′−1

(
ZitXital,2k−1hl,2k−1(t)hl′ ,2k′−1(t)− ZitXital,2khl,2k(t)hl′ ,2k′−1(t),

)

If hl′ ,2k′ (t) =
√

2l, then hl′ ,2k′−1(t) = 0 and if hl′ ,2k′−1(t) =
√

2l, then
hl′ ,2k′ (t) = 0, otherwise both hl′ ,2k′ (t) and hl′ ,2k′−1(t) are zeros. Thus con-
dition (ii) ensures (b).

Consider (S.3). From (62), we can easily verify that (a) is a direct result
of (i) for all l ∈ {2, . . . , L} and k ∈ {1, . . . ,Kl}.�

A.2 Proofs of Section 3

Proof of Lemma 1: The IV estimator of our (modified) wavelets coeffi-
cients is given by

b̃l,k,p =
1

n(T − 1)

n∑
i=1

T∑
t=2

Zlk,it,p∆yit,

=
1

n(T − 1)

n∑
i=1

T∑
t=2

Zlk,it,p(
L∑
l=1

Kl∑
k=1

P∑
q=1

Zlk,it,qbl,k,q + ∆eit),

= bl,k,p +
1

n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Zlk,it,p∆eit.

The last equality is due to the orthonormality conditions (A) and (B). Sub-
tracting bl,k,p from both sides and multiplying by

√
n(T − 1), we get, for
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l > 1,

√
n(T − 1)(b̃l,k,p − bl,k,p) =

1√
n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Zlk,it,q∆eit,

=
1√

n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Wlk,pq(t)Zit,q∆eit,

=
1√

n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Al,2k,pqhl,2k(t)Zit,q∆eit

− 1√
n(T − 1)

n∑
i=1

T∑
t=2

P∑
q=1

Al,2k−1,pqhl,2k−1(t)Zit,q∆eit,

=
1√

n(2L−l−1 − 1)

P∑
q=1

Al,2k,pq

n∑
i=1

∑
t∈{hl,2k(t)6=0}

Zit,q∆eit

− 1√
n(2L−l−1 − 1)

P∑
q=1

Al,2k−1,pq

n∑
i=1

∑
t∈{hl,2k−1(t) 6=0}

Zit,q∆eit,

where Wlk,pq(t) and Al,m,pq are the (p, q)- elements of the matrices Wl,k(t)
and Al,m, respectively. and, for l = 1,

√
n(T − 1)(b̃1,1,p − b1,1,p) =

1√
n(2L − 1)

P∑
q=1

A1,1,pq

n∑
i=1

T∑
t=2

Zit,q∆eit.

By Assumption B.(i), we know that Ec(Zit∆eit) = 0, for all i and t. The
law of total expectation implies

E
(√

n(T − 1)(b̃l,k,p − bl,k,p)
)

= 0,

for all l and k. The total variance, for l > 1, can be written as

Σl,k,p = E
(
(
√
n(T − 1)(b̃l,k,p − bl,k,p))2

)
,

= E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k,pqAl,2k,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,rEc
(
∆eit∆ejs

)
+ E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k−1,pqAl,2k−1,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,rEc
(
∆eit∆ejs

) ,

= Πl,k,1 + Πl,k,2,
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where
∑P

q,r=1,
∑n

i,j=1 and
∑

t,s∈H denote the double summations
∑P

q=1

∑P
q=1∑n

i=1

∑n
j=1 and

∑
t∈{Hl,2k(t)6=0}

∑
s∈{Hl,2k(s)6=0}, respectively.

For l = 1,

Σ1,1,p := E
(
(
√
n(T − 1)(b̃1,1,p − b1,1,p))2

)
= E

 P∑
q,r=1

1

n(2L − 1)
A1,1,pqA1,1,pr

n∑
i,j=1

T∑
t,s=2

Zit,qZjs,rEc
(
∆eit∆ejs

) .

By using Assumption C, we can infer

Πl,k,1 = E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k,pqAl,2k,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,rσij,ts

 ,

≤ E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k,pqAl,2k,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,r|σij,ts|

 ,

≤ E

A2
l,2k,pp

1

n(2L−l−1 − 1)

n∑
i,j=1

∑
t,s∈{hl,2k(t),hl,2k(s)6=0}

Zit,pZjs,p

σ,

Πl,k,2 ≤ E

 1

n(2L−l−1 − 1)

P∑
q,r=1

Al,2k−1,pqAl,2k−1,pr

n∑
i,j=1

∑
t,s∈H

Zit,qZjs,r|σij,ts|

 , and

Σ1,1,p ≤ E

 1

n(2L − 1)

P∑
q,r=1

A1,1,pqA1,1,pr

n∑
i,j=1

T∑
t,s=2

Zit,qZjs,r|σij,ts|

 .

Because E(||Al,2k||4) and E(||Al,2k−1||4) are bounded uniformly in l, k, and
E(||Zit||4), and |σij,ts| is bounded uniformly in i, j, t, s (see Assumptions B
and C), we can easily show (by Cauchy-Schwarz inequality) that Σl,k,p ≤M
is bounded uniformly in l, k, p. Using Assumption B(iii), we can write

P

(∣∣∣b̃l,k,p − bl,k,p∣∣∣ > M
1
2

c√
n(T − 1)

)
≤ P

(
Σ
− 1

2
l,k,p

√
n(T − 1)

∣∣∣b̃l,k,p − bl,k,p∣∣∣ > c

)
,

≤ 1
c exp(− c2

2 ). (63)

Using Boole’s inequality and (63), we get

P

(
sup
l,k,p

∣∣∣b̃l,k,p − bl,k,p∣∣∣ > M
1
2

c√
n(T − 1)

)
≤
∑
l,k,p

P

(∣∣∣b̃l,k,p − bl,k,p∣∣∣ > M
1
2

c√
n(T − 1)

)
,

≤ (2L−1P )
1

c
exp(−c

2

2
),

= (T − 1)P
1

c
exp(−c

2

2
),
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where
∑

l,k,p denotes the triple summation
∑L

l=1

∑Kl
k=1

∑P
p=1. The asser-

tion of the theorem follows by replacing c with
√

2 log((T − 1)P )c∗ for any
c∗ > 0. �

Proof of Theorem 1: We have first to prove that (i) : supt |γ̃t,p −
γt,p| = op(1) for all p ∈ {1, . . . , P} if

√
T − 1λn,T → 0, as n, T → ∞ or

n→∞ and T is fixed, and then conclude that (ii) : 1
T−1

∑T
t=2 ||γ̃t − γt||2 =

Op((log(T − 1)/n)κ), if
√
T − 1λn,T ∼ (log(T − 1)/n)κ/2, for κ ∈]0, 1].

By construction,

γ̃t,p − γt,p =
∑P

q=1

∑L
l=1

∑Kl
k=1Wlk,pq(t)b̂l,k,q −

∑P
q=1

∑L
l=1

∑Kl
k=1Wlk,pq(t)bl,k,q,(64)

where

b̂l,k,q = b̃l,k,q − b̃l,k,q(|b̃l,k,q| < λn,T ). (65)

and

Wlk,pq(t) = Al,2k,pq(t)Hl,2k(t)−Al,2k−1,pq(t)Hl,2k−1(t), (66)

=
√

2l−2Al,2k,pqI(Hl,2k(t) 6= 0)−
√

2l−2Al,2k−1,pqI(Hl,2k−1(t) 6= 0).

Plugging (65) and (66) in (64) and using the absolute value inequality,
we get

|γ̃t,p − γt,p| ≤
P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k,pqI(Hl,2k(t) 6= 0)(b̃l,k,q − bl,k,q)|

+

P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k,pqI(Hl,2k(t) 6= 0)b̃l,k,qI(|b̃l,k,q| < λn,T )|

+

P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k−1,pqI(Hl,2k−1(t) 6= 0)(b̃l,k,q − bl,k,q)|

+

P∑
q=1

L∑
l=1

Kl∑
k=1

√
2l−2|Al,2k,pqI(Hl,2k−1(t) 6= 0)b̃l,k,qI(|b̃l,k,q| < λn,T )|,

= a+ b+ c+ d.

Because b̃l,k,pI(|b̃l,k,p| < λn,T ) < λn,T and |b̃l,k,p − bl,k,p| ≤ supl,k,p |b̃l,k,p −
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bl,k,p| for all p ∈ {1, . . . , P}, we can write

a ≤ sup
l,k,p
|b̃l,k,p − bl,k,p|

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k,pq
√

2l−2I(Hl,2k(t) 6= 0)|,

b ≤ λn,T
P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k,pq
√

2l−2I(Hl,2k(t) 6= 0)|,

c ≤ sup
l,k,p
|b̃l,k,p − bl,k,p|

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k−1,pq
√

2l−2I(Hl,2k(t) 6= 0)|, and

d ≤ λn,T
P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k−1,pq
√

2l−2I(Hl,2k−1(t) 6= 0)|.

By Assumption B, E(||Al,2k||4) and E(||Al,2k−1||4) are bounded uniformly
in l and k. We can deduce that

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k,pq
√

2l−2I(Hl,2k(t) 6= 0)| = Op(1)
L∑
l=1

Kl∑
k=1

|
√

2l−2I(Hl,2k(t) 6= 0)| and

P∑
q=1

L∑
l=1

Kl∑
k=1

|Al,2k−1,pq
√

2l−2I(Hl,2k−1(t) 6= 0)| = Op(1)
L∑
l=1

Kl∑
k=1

|
√

2l−2I(Hl,2k−1(t) 6= 0)|.

Moreover, from the construction of Hl,2k(t) and Hl,2k−1(t), we can easily
verify that

sup
t

L∑
l=1

Kl∑
k=1

√
2l−2I(Hl,2k−1(t) 6= 0) =

L∑
l=1

√
2l−2 = O(

√
2L−1) = O(

√
T − 1)

By Lemma 1, we can infer that

sup
t,p
|γ̃t,p − γt,p| = supl,k,p |b̃l,k,p − bl,k,p| ×Op(

√
T − 1) + λn,T ×Op(

√
T − 1),

= Op
(√ log(T−1)

n +
√
T − 1λn,T

)
. (67)

Assertion (i) follows immediately if
√
T − 1λn,T → 0 with log(T −1)/n→ 0,

as n, T →∞.
Consider Assertion (ii). Let Lp := {(l, k)|bl,k,p = 0} denote the set of

double indexes corresponding to the non-zero true wavelet coefficients so
that γt,p =

∑P
q=1

∑L
l=1

∑Kl
k=1Wl,k,pq(t)bl,k,q can be written as

γt,p =

P∑
q=1

∑
(l,k)∈Lp

Wl,k,pq(t)bl,k,q,
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and γ̃t,p =
∑P

q=1

∑L
l=1

∑Kl
k=1Wlk,pq(t)b̂l,k,q as

γ̃t,p =

P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)b̂l,k,q +

P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q.

The difference, can be written as

γ̃t,p − γt,p =

P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)(b̂l,k,q − bl,k,q) +

P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q.

Averaging the square, we get

1

T − 1

T−1∑
t=2

(γ̃t,p − γt,p)2 =
1

T − 1

T−1∑
t=2

 P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)(b̂l,k,q − bl,k,q)

2

+
1

T − 1

T−1∑
t=2

 P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q

2

− 1

T − 1

T−1∑
t=2

 P∑
q=1

∑
(l,k)∈Lp

Wlk,pq(t)(b̂l,k,q − bl,k,q)

×
 P∑
q=1

∑
(l,k)/∈Lp

Wlk,pq(t)b̂l,k,q

 ,

=
1

T − 1

T−1∑
t=2

e2t +
1

T − 1

T−1∑
t=2

f2t −
1

T − 1

T−1∑
t=2

etft.

From the analysis of assertion (i), we can see that

et = sup
l,k,p
|b̂l,k,p − bl,k,p|Op(1)

P∑
q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1)

= Op
(√ log(T − 1)

n(T − 1)
+ λn,T

) P∑
q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1),

and

ft = sup
(l,k)∈Lp,p

|b̂l,k,p|Op(1)

P∑
q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1).
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Using Cauchy-Schwarz inequality to (
∑P

q=1

∑
(l,k)∈Lp

√
2l−1I(Hl,2k−1(t) 6=

1;Hl,2k(t) 6= 1))2 over (l, k), we can infer that

e2t ≤ Op
( log(T − 1)

n(T − 1)
+ λ2n,T

) P∑
q=1

∑
(l,k)∈Lp

2l−1I(Hl,2k−1(t) 6= 1;Hl,2k(t) 6= 1),

and

1

T − 1

T−2∑
t=2

f2t ≤ ( sup
(l,k)∈Lp,p

|b̂l,k,p|)2Op(T − 1).

If
√
T − 1λn,T ∼ (log(T − 1)/n)κ/2, then plim( 1

T−1
∑T−2

t=2 f
2
t ) = 0 as T

and\or n pass to infinity, for any κ ∈]0, 1[.
Let us now examine the average of e2t over t. If, in total, the maximal

number of jumps is S∗ =
∑P

p Sp, then by Proposition 1 the number of non-

zero coefficients is at most (S∗+ 1)L. By taking the average of e2t over t, we
can hence infer that

1

T − 1

T−1∑
t=2

e2t ≤ Op
( log(T − 1)

n(T − 1)
+ λ2n,T

)
(min{(S∗ + 1) log(T − 1), (T − 1)}) .

Finally, because plim( 1
T−1

∑T−2
t=2 f

2
t ) = 0, by Cauchy-Schwarz inequality, we

can infer that 1
T−1

∑T−1
t=2 etft also can be neglected. Thus

1

T − 1

T−1∑
t=2

(γ̃t,p − γt,p)2 = Op
(J∗(log(T − 1)/n)κ

(T − 1)

)
,

where J∗ = min{(S∗ + 1) log(T − 1), (T − 1)}. This completes the proof. �

A.3 Proofs of Section 4

Proof of Lemma 2: We have to show that

sup
k,p∈{1,...,P}

∣∣∣c̃(m)
L,k,p − c

(m)
L,k,p

∣∣∣ = Op
(√

log(T − 1)/(n(T − 1))
)
,

for m = s, u.
For p ∈ {1, . . . , P} and m = s, we have by construction

c̃
(s)
L,k,p − c

(s)
L,k,p =

1

T − 1

T∑
t=2

ψL,k(t− 1)(γ̃t,p − γt,p),

=
1

T − 1

T∑
t=2

ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)(b̃l,m,q − bl,m,q),

=
1

T − 1

∑
t∈{ψL,k(t−1)6=0}

ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)(b̃l,m,q − bl,m,q),
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where
∑

l,m,q denotes the triple summation
∑L

l=1

∑Kl
k=1

∑P
q=1.

Taking the absolute value, we obtain

|c̃(s)L,k,p − c
(s)
L,k,p| ≤ sup

l,k,p
|b̃l,k,p − bl,k,p|

1

T − 1

∑
t∈{ψL,k(t−1)6=0}

∣∣∣∣∣∣ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)

∣∣∣∣∣∣ .
Recall that 1

T−1
∑

t∈{ψL,k(t−1) 6=0} ψL,k(t−1)2 = 1. By using Cauchy-Schwarz
inequality, we can easily verify that

1

T − 1

∑
t∈{ψL,k(t−1)6=0}

∣∣∣∣∣∣ψL,k(t− 1)
∑
l,m,q

Wl,m,p,q(t)

∣∣∣∣∣∣ ≤
 1

T − 1

∑
t∈{ψL,k(t−1)6=0}

(
∑
l,m,q

Wl,m,p,q(t))
2

1/2

.

Because the support of ψL,k(t−1) is of length 2 (
∑

t I(t ∈ {ψL,k(t−1) 6=
0}) = 2 ), by using a similar analysis to that used in the proof of Theorem 1,
we can easily verify that the term in the last inequality is Op(1). By Lemma
1, we can hence infer that

|c̃(s)L,k,p − c
(s)
L,k,p| ≤ sup

l,k,p
|b̃l,k,p − bl,k,p|Op(1) = Op(

√
log(T − 1)/n(T − 1)).

The proof of supL,k,p |c̃
(u)
L,k,p−c

(u)
L,k,p| being Op(

√
log(T − 1)/n(T − 1)) is sim-

ilar and thus omitted. �

Proof of Theorem 2: To prove the assertion, we show, in a first part,
that asymptotically no jump can be detected in the stability intervals if λn,T
satisfies Condition c.1. In a second part, we show that all existing jumps
must be asymptotically identified if λn,T satisfies Condition c.2.

We begin with defining the following sets for each p ∈ {1, . . . , P}:

Jp := {τ1,p, . . . , τSp,p},
J cp := {1, . . . , T} \ Jp,
J p := {2, 4, . . . , T − 1} ∩ Jp,
J p := {3, 5, . . . , T} ∩ Jp,

J cp := {2, 4, . . . , T − 1} \ J p, and

J cp := {3, 5, . . . , T} \ J p.

Here, Jp is the set of all jump locations for parameter βt,p, J cp is its com-

plement, which contains only the stability intervals, J p is the set of all
even jump locations and J p is the set of all odd jump locations so that

J p ∩ J p = ∅ and J p ∪ J p = Jp. Finally, the sets J cp and J cp define the

complements of J p and J p, respectively.

59



Define the event

ωn,T := { sup
t∈J cp , p∈{1,...,P}

{|∆β̃(u)t,p |IJ cp + |∆β̃(s)t,p |IJ cp} = 0},

where IJ cp
= I(t ∈ J cp), IJ c

p
= I(t ∈ J cp) and I(.) is the indicator function.

To prove that no jump can be identified in the stability intervals, we

have to show, that P (ωn,T )→ 1, if
√

n(T−1)
log(T−1)λn,T →∞, as n, T →∞ or as

n→∞ and T is fixed. Note that J cp and J cp are adjacent.

Let’s now start with the no-jump case in J cp. By construction, we have,
for all t ∈ {2, 4, . . . , T − 1},

∆β̃
(u)
t,p =

KL∑
k=1

∆ψL,k(t)ĉ
(u)
L,k,p

Recall that at l = L, the construction of the wavelets basis implies that at
each t ∈ {2, 4, . . . , T − 1} there is only one differenced basis ∆ψL,k(t) that
is not zero. Let Kcp = {k|∆ψL,k(t) 6= 0, t ∈ J cp} = {k|∆ψL,k(t− 1) 6= 0, t ∈
J cp}. We can infer that {supt∈J cp

|
∑KL

k=1 ∆ψL,k(t)ĉ
(u)
L,k,p| = 0} occurs only if

{supk∈Kcp |c
(u)
L,k,p| = 0} occurs.

By analogy, we can show the same assertion for the complement set J cp,
i.e., {supt∈J c

p
|∆β̃(s)t,p | = 0} occurs only if {supk∈Kcp |ĉ

(s)
L,k,p| = 0} occurs.

To study P (ωn,T ), it is hence sufficient to study

P ( sup
k∈Kcp,m,p∈{1,...,P}

|ĉ(m)
L,k,p| = 0) = P ( sup

k∈Kcp,m,p∈{1,...,P}
|c̃(m)
L,k,p| < λn,T ).

By Lemma 2, supk∈Kcp,m,p∈{1,...,P} |c̃
(m)
L,k,p| = Op

(√
log(T − 1)/n(T − 1)

)
,

since c
(m)
L,k,p = 0, for all k ∈ Kcp, and p ∈ {1, . . . , P}. Thus, if

√
n(T−1)
log(T−1)λn,T →

∞, as n, T →∞ or n→∞ and T is fixed, then P (ωn,T )→ 1.
To complete the proof and demonstrate that all true jumps will be

asymptotically identified, we suppose that there exists a jump location
τj,p ∈ J p ∪ J p for at least one p ∈ {1, . . . , P} that is not detected and

show the contradiction. If τj,p ∈ J p, then

|∆β̃(u)τj,p,p|IJ p + |∆β̃(s)τj,p,p|IJ p = |∆β̃(u)τj,p,p|.

Adding and subtracting ∆β
(u)
τj,p,p, we get

∆β̃(u)τj,p,p =

KL∑
k=1

∆ψL,k(τj,p)(c̃
(u)
L,k,p − c

(u)
L,k,p)−

KL∑
k=1

∆ψL,k(τj,p)c̃
(u)
L,k,pI(c̃

(u)
L,k,p < λn,T )

+

KL∑
k=1

∆ψL,k(τj,p)c
(u)
L,k,p,

= I + II + III.
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By Lemma 2, I = op(1), II = op(1) as long as
√
T − 1λn,T → 0, and

III 6= 0 because
∑KL

k=1 ∆ψL,k(t)c
(u)
L,k,p = ∆β

(u)
τj,p,p 6= 0. The probability of

getting ∆β̃
(u)
τj,p,p = 0 converges hence to zero.

If τj,p ∈ J p, then

|∆β̃(u)τj,p,p|IJ p + |∆β̃(s)τj,p,p|IJ p = |∆β̃(s)τj,p,p|.

The prove is similar to the case of τj,p ∈ J p and thus omitted. This com-
pletes the proof. �

Proof of Theorem 3: Recall that the post-Wavelet estimator is
obtained by replacing the set of the true jump locations τ1,1, . . . , τS1+1,1,

. . . , τ1,P , . . . , τSP+1,P in β̂(τ) = (β̂τ1,1 , . . . , β̂τS1+1,1 , . . . , β̂τ1,P , . . . , β̂τSP+1,P )
′

by the estimated jump locations τ̃ := {τ̃j,p|j ∈ {1, . . . , Sp+1}, p ∈ {1, . . . , P}},
given S̃1 = S1, . . . , S̃p = Sp. By using Theorem 2, we can infer that, condi-
tional on S̃1 = S1, . . . , S̃p = Sp,

√
nT

1
2

(τ̃)β̂(τ̃) =
√
nT

1
2

(τ)β̂(τ) + op(1).

To study the asymptotic distribution of
√
nT

1
2

(τ̃)β̂(τ̃) it is hence sufficient to

study
√
nT

1
2

(τ)β̂(τ).

β̂(τ) =
( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẏit
)

= β(τ) +
( n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1( n∑
i=1

T∑
t=2

Zit,(τ)∆ėit
)
.

Scaling by
√
nT

1
2

(τ̃) and rearranging, we get

√
nT

1
2

(τ)

(
β̂(τ̃) − β(τ)

)
=

(
(nT(τ))−1

n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

)−1((
nT(τ)

)− 1
2

n∑
i=1

T∑
t=2

Zit,(τ)∆ėit

)
.

By Assumption E, the first term on the right hand side converges in prob-
ability to Q◦(τ) and the second term converges in distribution to N(0, V ◦(τ)).
Slutsky’s rule implies

√
nT

1
2

(τ)

(
β̂(τ) − β(τ)

) d→ N(0, (Q◦(τ))
−1(V ◦(τ))(Q◦(τ))−1).

It follows

√
nT

1
2

(τ̃)

(
β̂(τ̃) − β(τ)

)
=
√
nT

1
2

(τ)

(
β̂(τ) − β(τ)

)
+ op(1)

d→ N(0, (Q◦(τ))
−1(V ◦(τ))(Q◦(τ))−1).
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This completes the Proof. �

Proof of Proposition 2 Consider c = 1 (the case of homoscedastic-
ity without presence of auto- and cross-section correlation). Because by
Assumption E, we know that

(nT(τ))−1
n∑
i=1

T∑
t=2

Zit,(τ)∆Ẋ
′

it,(τ)

p→ Q◦(τ) and

(nT(τ))−1
n∑
i=1

T∑
t=2

n∑
j=1

T∑
s=2

Zit,(τ)Z
′

js,(τ)σij,ts
p→ V ◦(τ),

it suffices to prove that

V̂
(1)
(τ̃) = (nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Zit,(τ̃)σ̂
2 p→ V

(1)
(τ) ,

where V
(1)
(τ) = (nT(τ))−1

∑n
i=1

∑T
t=2 Zit,(τ)Z

′

it,(τ)σ
2, with σ2 = Ec(∆ėit).

V̂
(1)
(τ̃) − V

(1)
(τ) = (

1

n(T − 1)

n∑
i=1

T∑
t=2

∆ê2it − σ2)(nT(τ̃))−1
n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃),

= +σ2

(
(nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃) − (nT(τ))−1
n∑
i=1

T∑
t=2

Zit,(τ)Z
′

it,(τ)

)
,

= a+ b.

From Assumption B(ii), we can infer

||a|| ≤ (
1

n(T − 1)

n∑
i=1

T∑
t=2

∆ê2it − σ2)
1

n

n∑
i=1

T∑
t=2

||(T(τ̃))−1/2Zit,(τ̃)||2,

=

(
1

n(T − 1)

n∑
i=1

T∑
t=2

((∆ê2it −∆e2it) + (∆e2it − σ2))

)
1

n

n∑
i=1

T∑
t=2

||(T(τ̃))−1/2Zit,(τ̃)||2,

From

∆ˆ̇eit = ∆Ẏit −∆Ẋ
′

it,(τ̃)β̂(τ̃),

= ∆ėit + ∆Ẋ
′

it,(τ̃)(β(τ̃) − β̂(τ̃)), (68)

and by using Theorem 3 together with Assumption B(ii), we can show that

1

n(T − 1)

n∑
i=1

T∑
t=2

∆ˆ̇eit −
1

n(T − 1)

n∑
i=1

T∑
t=2

∆ėit = op(1). (69)
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By the law of large numbers,

1

n(T − 1)

n∑
i=1

T∑
t=2

∆ėit − σ2 = op(1).

Thus, ||a|| = (op(1) + op(1))Op(1) = op(1). Moreover, from Theorem 2, we
can infer that, given S̃1 = S1, . . . , S̃P = SP ,

(nT(τ̃))−1
n∑
i=1

T∑
t=2

Zit,(τ̃)Zit,(τ̃) = (nT(τ))−1
n∑
i=1

T∑
t=2

Zit,(τ)Zit,(τ) + op(1).

Thus,

V̂
(1)
(τ̃) − V

(1)
(τ) = op(1).

Consider c = 2 (the case of cross-section heteroskedasticity without auto-
and cross-section correlations). Because of Assumption E, it suffices to prove
that

V̂
(2)
(τ̃) = (nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Zit,(τ̃)σ̂
2
i

p→ V
(2)
(τ) ,

where V
(2)
(τ) = (nT(τ))−1

∑n
i=1

∑T
t=2 Zit,(τ)Z

′

it,(τ)σ
2
i , with σ2i = Ec(∆ėit).

V̂
(2)
(τ̃) − V

(2)
(τ) =

1

n

n∑
i=1

(σ̂2i − σ2i )(T(τ̃))−1
T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃),

= +
1

n

n∑
i=1

σ2i

(
(T(τ̃))−1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃) − (T(τ))−1
T∑
t=2

Zit,(τ)Z
′

it,(τ)

)
,

= d+ e.

||d|| ≤ 1

n

n∑
i=1

(σ̂2i − σ2i )
T∑
t=2

||(T(τ̃))−1/2Zit,(τ̃)||2,

=
1

n

n∑
i=1

((σ̂2i −
1

(T − 1)

T∑
t=2

∆ėit)− (σ2i −
1

(T − 1)

T∑
t=2

∆ėit)
1

n

T∑
t=2

||(T(τ̃))−1/2Zit,(τ̃)||2.

From Equation (68), and Theorem 3, we can infer

1

(T − 1)

T∑
t=2

∆ˆ̇eit −
1

(T − 1)

T∑
t=2

∆ėit = op(1)νi, (70)
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where 1
n

∑n
i=1 |νi| = Op(1). Moreover,

σ2i −
1

(T − 1)

T∑
t=2

∆ėit = op(1)µi, (71)

where 1
n

∑n
i=1 |µi| = Op(1). Note that the first terms in (70) and (71) do

not depend on i. By using Assumption B(ii), we can infer

||d|| ≤ op(1)
1

n

n∑
i=1

|νi|
T∑
t=2

||(T(τ̃))−1/2Zit,(τ̃)||2 + op(1)
1

n

n∑
i=1

|µi|
T∑
t=2

||(T(τ̃))−1/2Zit,(τ̃)||2,

= op(1)Op(1) + op(1)Op(1).

The proof of e being op(1) is similar to the proof of b in the first part. This
is because σ2i does not affect the analysis.

The proof of V̂
(3)
τ̃ being (nT(τ))−1

∑n
i=1

∑T
t=2 Zit,(τ)Z

′

it,(τ)σ
2
t +op(1), with

σ2t = Ec(∆ėit) is conceptually similar and thus omitted.
Finally, consider c = 4 (The case of cross-section and time heteroskedas-

ticity without auto- and cross-section correlations). As in the previous cases,
all we need is to prove that

V̂
(4)
(τ̃) = (nT(τ̃))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)∆
ˆ̇e2it

p→ V
(4)
(τ) ,

where

V
(4)
(τ) = (nT(τ))−1

n∑
i=1

T∑
t=2

Zit,(τ)Z
′

it,(τ)σ
2
it,

with σ2it = Ec(∆ėit).

V̂
(4)
(τ̃) − V

(4)
(τ) = (nT(τ))−1

n∑
i=1

T∑
t=2

Zit,(τ̃)Z
′

it,(τ̃)(∆
ˆ̇e2it −∆ė2it)

+ (nT(τ))−1
n∑
i=1

T∑
t=2

(Zit,(τ̃)Z
′

it,(τ̃) − Zit,(τ)Z
′

it,(τ))∆ė
2
it

+ (nT(τ))−1
n∑
i=1

T∑
t=2

Zit,(τ)Z
′

it,(τ)(∆ė
2
it − σ2it).

= f + g + h.

Cauchy-Schwarz inequality implies

||f || ≤

(
(nT(τ))−1

n∑
i=1

T∑
t=2

||Zit,(τ)||2
)1/2(

(nT(τ))−1
n∑
i=1

T∑
t=2

(∆ˆ̇e2it −∆ė2it)

)1/2

= op(1).
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By using Theorem 3, we can also verify that ||g|| = op(1). Finally, Cauchy-
Schwarz, Assumption B(ii), the law of large numbers implies that ||h|| =
op(1). It follows

V̂
(4)
(τ̃)

p→ V
(4)
(τ) .

This completes the proof. �
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B Supplementary Material: Inference on the De-
tected Jumps

To test for the statistical significance of the post-SAW detected break points,
we propose two testing procedures: A Chow-type test to individually ex-
amine the significance of the jumps and a Hotelling-type test to examine
weather or not a model with constant parameters is more appropriate for
the data than a model with the detected jumps.

B.1 Chow-type Test

Based on the asymptotic distribution of β̂(τ̃) derived in Theorem 3 and

the consistent variance estimators Σ̂
(c)
(τ̃) presented in Proposition 2, we can

construct a Chow-type test to examine the statistical significance of the
detected jumps. To simplify exposition, let us begin with a simple case of
one regressor and a single jump that is detected by our post-SAW approach
at some τ̃1 ∈ {3, . . . , T −1}. The post-SAW regression model can be written
as follows

∆Ẏit = ∆Ẋ
(1)
it βτ̃1 + ∆Ẋ

(2)
it βτ̃2 + ∆ėit, (72)

where
∆Ẋ

(j)
it = ∆ẊitI

(
τ̃j−1 < t ≤ τ̃j

)
with τ̃0 = 2 and τ̃2 = T , for j = 1, 2.

In vector notation, Model (72) can be written as

∆Ẏi2
...

∆Ẏiτ̃1
∆Ẏi,τ̃1+1
...

∆Ẏi,T


=



∆Ẋi2 0
...

...

∆Ẋiτ̃1 0

0 ∆Ẋi,τ̃1+1
...

...

0 ∆Ẋi,T


(
βτ̃1 , βτ̃2

)
+



∆ėi2
...
∆ėiτ̃1
∆ėi,τ̃1+1
...
∆ėi,T


.

Let
β∗τ̃2 = βτ̃2 − βτ̃1 .

Because

∆Ẋi1 0
...

...

∆Ẋiτ̃1 0

0 ∆Ẋi,τ̃1+1
...

...

0 ∆Ẋi,τ̃2


(
βτ̃1 , βτ̃2

)
=



∆Ẋi1 0
...

...

∆Ẋiτ̃1 0

∆Ẋi,τ̃1+1 ∆Ẋi,τ̃1+1
...

...

∆Ẋi,τ̃2 ∆Ẋi,τ̃2


(
βτ̃1 , β

∗
τ̃2

)
,
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we can re-write (72) as

∆Ẏit = ∆Ẋitβτ̃1 + ∆Ẋ
(2)
it β

∗
τ̃2 + ∆ėit. (73)

If τ̃1 is statistically insignificant, then β∗τ̃2 theoretically should be zero.
The test problem can hence be formulated as follows:

H0 : β∗τ̃2 = βτ̃2 − βτ̃1 = 0

H1 : β∗τ̃2 6= 0,

and the test statistic can be dirived from the asymptotic distribution of
β̂∗τ̃2 = β̂τ̃2 − β̂τ̃1 , where β̂τ̃2 and β̂τ̃1 are the post-SAW estimators of βτ̃2 and
βτ̃1 respectively.

Now that we have motivated the testing idea for a straightforward case
with an unique explanatory variable and a single detected jump, we turn
to generalizations. The testing procedure is similar to the above discussed
procedure and can be based on an analogous re-transformation of the mul-
tivariate post-wavelet Model (38):

∆Ẏit = ∆
P∑
p=1

Ẋit,pβτ̃1,p +
P∑
p=1

S̃p+1∑
j=2

∆Ẋ
∗(j)
it,p β

∗
τ̃j,p + ∆ėit, (74)

where
∆Ẋ

∗(j)
it,p = ∆Ẋit,pI

(
t > τ̃j−1,p

)
,

and
β∗τ̃j,p = βτ̃j,p − βτ̃j−1,p .

The test statistic takes the form

CHτ̃j,p =
√
nΘ̂−1τ̃j,p

(
β̂τ̃j,p − β̂τ̃j−1,p

) d→ N(0, 1), (75)

where

Θ̂τ̃j,p =
Σ̂τ̃j,p,τ̃j,p

(τ̃j+1,p − τ̃j,p)
+

Σ̂τ̃j−1,p,τ̃j−1,p

(τ̃j,p − τ̃j−1,p)
− 2

Σ̂τ̃j,p,τ̃j−1,p

(τ̃j+1,p − τ̃j,p)1/2(τ̃j,p − τ̃j−1,p)1/2

with Σ̂τj,p,τj,p , Σ̂τj−1,p,τj−1,p , and Σ̂τj,p,τj−1,p are the elements of Σ̂(τ̃) cor-
responding to the variances and correlation estimates of βτj,p and βτj−1,p

respectively.
We reject the null hypothesis at a level α if |CHτ̃j,p | is larger than the

(1− α/2)-quantile of the standard normal distribution.
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B.2 Hotelling-type Test

To test whether a model with constant parameters is more appropriate for
the data than a model with the post-SAW detected jumps, we examine the
following multidimensional testing problem:

H0 : β∗τ̃1,1 = . . . = β∗τ̃SP ,P
= 0

H1 : β∗τ̃j,p 6= 0 for at least on τ̃j,p.

In this case, the test can take the form of a Hotelling test statistic with an
asymptotic χ2 distribution:

T2
(τ̃) = n

(
D̃β̂(τ̃)

)′(
D̃T −

1
2

(τ̃) Σ̂(τ̃)T
− 1

2

(τ̃) D
′

(τ̃)

)−1(D̃β̂(τ̃)) d→ χ2
( P∑
p=1

S̃p
)
,

where

D̃ =


DS̃1×(S̃1+1) 0S̃1×(S̃2+1) · · · 0S̃1×(S̃P+1)

0S̃2×(S̃1+1) DS̃2×(S̃2+1) 0S̃2×(S̃P+1)
...

. . .
...

0S̃P×(S̃1+1) 0S̃P×(S̃2+1) · · · DS̃P×(S̃P+1)

 .

Here, 0S̃p×(S̃k+1) are (S̃p×(S̃k+1))-matrices with zero elements, and DS̃p×(S̃p+1)

are
(
S̃p × (S̃p + 1)

)
-matrices defined as follows:

DS̃p×(S̃p+1) =


−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
...

. . .
. . .

0 0 · · · · · · −1 1

 .

We reject the null hypothesis at a level α if T2
(τ̃) is larger than the (1− α)-

quantile of the χ2
(∑P

p=1 S̃p
)
- distribution.
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