
Journal of Econometrics 51 (1992) 259-284. North-Holland 

Finite sample evidence on the 
performance of stochastic frontiers 
and data envelopment analysis 
using panel data* 

Byeong-Ho Gong 
Korea Economic Research Institute, Seoul, Korea 

Robin C. Sickles 
Rice Universily, Houston, TX 77251, USA 

Received November 1988, final version received January 1991 

In recent years a number of alternative methods have been proposed with which to measure 
technical efficiency. However, we know little of their comparative performance. In this study we 
examine the relative strengths of two different methodologies - stochastic frontier models (SF) 
and data envelopment analysis (DEA) - in estimating firm-specific technical efficiency. To 
address the limitations of previous studies we utilize Monte Carlo techniques which allow us to 
control the structure of the underlying technology and the stochastic environment. 

Most stochastic frontier models have focused on estimating average technical efficiency across 
all firms. The failure to estimate firm-specific technical efficiency has been regarded as a major 
limitation of previous stochastic frontier models. To overcome this limitation we estimate 
firm-specific technical efficiency using panel data. We also examine the performance of stochas- 
tic frontier models using panel data for three estimators - maximum likelihood random effects, 
generalized least squares random effects, and within fixed effects. 

Our results indicate that for simple underlying technologies the relative performance of the 
stochastic frontier models vis-a-vis DEA relies on the choice of functional forms. If the employed 
form is close to the given underlying technology, stochastic frontier models outperform DEA 
using a number of metrics. As the misspecification of the functional form becomes more serious 
and as the degree of correlatedness of inefficiency with regressors increases, DEA’s appeal 
becomes more compelling. Our results also indicate that the preferred estimator for the SF 
model is the within estimator, which addresses two problems common to stochastic frontier 
models - the possible correlatedness of input levels and technical efficiency and the dependence 
of stochastic frontier models on distributional assumptions concerning the form of technical 
inefficiency. 
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1. Introduction 

Beginning with the work of Farrell (1957),’ research on the measurement 
of productive efficiency primarily has dealt with two basic questions: how 
should the frontier production function of a firm or an industry be specified 
and how should efficiency be measured? The two issues are closely related 
since the production frontier is used as a yardstick for efficiency measure- 
ment. 

Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck 
(1977) introduced a satisfactory conceptual basis for addressing the first 
question - allow for random shocks in the traditional production frontier 
and we utilize this specification as our reference point to measure efficiency. 
Theoretical guidance to the measurement of productive efficiency can be 
found in Debreu (1951), Farrell (19571, and Fgre, Grosskopf, and Love11 
(1985). Efforts to measure efficiency can be divided into two broad ap- 
proaches - statistical [Schmidt (1985)] and nonstatistical [Charnes and Cooper 
(198511. 

We us a particular nonparametric approach referred to as Data Envelop- 
ment Analysis (DEA) which has been used widely in management science 
and operations research to represent the nonstatistical approach. Unlike 
classical statistical approaches, DEA uses linear programming techniques to 
envelope observed input-output data as tightly as possible without requiring 
a priori specification of functional forms. DEA requires an assumption of 
convexity and monotonicity of the production possibility set and employs a 
postulated minimum extrapolation from observed data. 

DEA may provide a promising alternative technique to the usual statistical 
methods for estimating firm-specific productive efficiency. However, the 
relative superiority of specific methodologies is not just a theoretical but an 
empirical issue. Several papers compare results from the application of 
different measurement methods for the same data set [Banker, Conrad, and 
Strauss (19851, Banker, Charnes, Cooper, and Maindiratta (1986), and 
Nelson and Waldman (1986>].2 The common findings of these studies are 
that efficiency measurement depends on the choice of functional forms to 
approximate the underlying technology and that it depends on the measure- 
ment methodologies employed. Unfortunately, further anlayses of these 
findings are hindered by the lack of knowledge of the true structure of 
production and efficiency. To address this limitation we utilize Monte Carlo 
techniques which allow us to control the underlying technology and level of 
firm efficiency. 

‘The Farrell efficiency measure is developed by constructing a reference production set and 
radially measuring productive efficiency relative to it [see, e.g., Kopp (1981), Kopp and Diewert 
(1982), and Charnes and Cooper (1985)]. 

*For a recent cross-sectional comparison of corrected ordinary least squares and DEA for 
piecewise linear technologies see Banker, Gadh, and Gorr (1989). 
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Although the majority of stochastic frontier (SF) studies have focused on 
estimating average efficiency of all firms in an industry, works by Jondrow, 
Lovell, Materov, and Schmidt (19821, Waldman (1984), Huang and Bagi 
(1984), Schmidt and Sickles (19841, Cornwell, Schmidt, and Sickles (1990), 
Kumbhakar (1987,1990), and Battese and Coelli (1988) have involved firm- 
specific efficiency estimation. Efficiency measurement based on cross-sec- 
tional data fails to identify unconditional firm-specific efficiency and this has 
been regarded as a major limitation of previous stochastic frontier models. 
However, there are at least two other serious drawbacks. The first is that a 
specific form for the distribution of productive efficiency is usually assumed 
in order to identify average efficiency. This means that estimation of produc- 
tive efficiency can be sensitive to these u priori assumptions. The second is 
that efficiency is often assumed to be independent of inputs. Intuitively, this 
may not correspond to the behavioral assumptions of firms since a firm 
deciding on its choice of inputs may condition that decision on an informa- 
tion set which includes the perceived distribution of efficiency within the 
industry. 

Our study focuses on the relative robustness of estimated firm-specific 
technical efficiency estimates using three econometric techniques - maxi- 
mum likelihood estimation (mle), generalized least squares (gls), and the 
within estimator - and using programming techniques - DEA. We extend 
the comparison of the two methodologies to plausible cases in which: (1) the 
complexity and structures of an underlying technology differ, (2) the relative 
size of technical inefficiency to statistical noise in the stochastic components 
differs, (3) the forms of the true structure of technical inefficiency vary, and 
(4) input levels and technical inefficiency are allowed to have an arbitrary 
degree of correlation. 

The remainder of the paper is organized as follows. Section 2 presents the 
functional forms for the underlying technology and distributional forms for 
stochastic components. Since applied researchers rarely have a priori infor- 
mation on the functional form of an underlying technology we use approxi- 
mating functional forms, the CES-translog (CES-TL), the translog (TL), and 
the generalized Leontief (GL), to estimate firm-specific efficiency. In section 
3 we outline three estimators and DEA as well as explain how firm-level 
efficiency is measured in terms of lost output or excess cost. Section 4 
explains how the experiments were designed. Experimental results and their 
implications are discussed in section 5. Concluding remarks are given in 
section 6. 

2. Model 

To fix ideas about productive efficiency, we regard a firm to be a cost-mini- 
mizer. If a firm achieves its goal in a production activity, it is called an 
economically efficient firm; if a firm cannot attain its objective, it is called an 

K 
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economically inefficient firm. Following Farrell, a firm may fail to minimize 
the cost of producing its output in two ways: (1) it may be technically 
inefficient, failing to operate on the production frontier or cost frontier, or 
(2) it may be allocatively inefficient, failing to employ the least cost mix of 
inputs given the fixed relative input prices. In order to facilitate the compari- 
son between SF and DEA we focus only on the former source of inefficiency 
and thus assume that the firm utilizes the correct input mix but that it could 
proportionately shrink its inputs and still produce the same level of output, 
i.e., the firm is technically inefficient [Schmidt and Love11 (1979)]. 

Under the assumption that all firms in an industry have the same determin- 
istic production process, the representative firm’s stochastic production fron- 
tier can be written as 

where wit = tiit - ui, ui 2 0, i = 1,. . ., N, t = 1,. ..,T. Here yi, is the level of 
output for firm i at time t, Xi, is the corresponding vector of inputs, p is a 
vector of unknown production parameters, and ui, is a random disturbance 
which includes statistical noise and technical inefficiency. The model is based 
on panel data in which a cross-section of firms (or plants) are each observed 
for a number of time periods. The advantage of the stochastic panel frontier 
model is placed on the estimation of the unconditional mean value of ui, 
Ecui). The residual, u, - ui, of the stochastic cross-section (or time-series) 
frontier model contains noise, vi, and cannot be used as an unconditional 
measure of ui. The conditional measure, E(ui(uj - ui), suggested by Jondrow 
et al. (1982) and Waldman (1984) is dependent on distributional assumptions 
and still is contaminated by its dependence on the presence of stochastic 
technology shocks. Schmidt and Sickles (1984) showed conditions under 
which unconditional estimates of firm-specific technical efficiency could be 
consistently estimated when panel data was available and inefficiency was 
time invariant. 

In order to estimate (11, we first need to specify f<X,,, p). The chosen 
functional form largely depends on a priori information about the underlying 
technology. Without specific engineering blue prints, etc., the choice of 
functional form is usually based on its flexibility [Diewert (1974) and Gallant 
(198111. The underlying technology we consider is a CRESH (Constant Ratio 
of Elasticity of Substitution, Homothetic) technology whose production func- 
tion was introduced by Hanoch (1971) and has been used in different 
connections by Guilkey and Love11 (19801, Guilkey, Lovell, and Sickles (19831, 
and Gong and Sickles (1989), among others. 

Let us suppose that a firm utilizes m inputs X,, = (x(lji,, . . . , x(m),,) 2 0 

to produce a single output yj, 2 0, Vi, t, with the technology represented by 
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the production function 

, (2) 

where 0 2 0, y > 0, 8, > 0, for all k, cr= ,6, = 1. The advantage of (2) is that 
it includes many well-known deterministic production functions under certain 
parametric restrictions. For example, if 0 = 0 then (2) is almost homogeneous 
CRES (Constant Ratio of Elasticity of Substitution), if p, = . * . = pm then 
(2) is homothetic CES (Constant Elasticity of Substitution), if 0 = 0 
and pi= *.* =P,,, then (2) is homogeneous CES, and it is homothetic 
Cobb-Douglas as (pr = . . . = p,) --, 0. The production characteristics of the 
underlying technology are summarized by returns to scale, y(x), and 
Allen-Uzawa3 partial elasticities of substitution between inputs (AES), aij(x>, 

c P$,X(k) -Pk 
Y(X) = - l:,, ’ ;pS,x(k)-Pi ’ 

k 

&‘k‘%X(k) -” 

* 
(4) 

-Pk 

We next turn to the stochastic portion of (1). As has been noted by Aigner 
et al. (1977), the first of two disturbances, uil, is typically assumed to be 
normally distributed and represents the usual statistical noise such as luck, 
climate, topography, and machine performance. The second, ui, is assumed 
to be a nonnegative disturbance which reflects technical inefficiency. Since 
we have no a priori knowledge that the distribution of technical inefficiency 
has a specific nonnegative form, we examine different nonnegative distribu- 
tions and analyze the robustness of our estimates of productive efficiency as 
its distribution varies. We follow Aigner et al. (19771, Cowing et al. (19821, 
and Meeusen and van den Broeck (1977) and assume that technical ineffi- 
ciency is distributed with a half-normal, gamma, and exponential distribution. 
In addition, we also assume that technical inefficiency is time-invariant. One 
justification is that firm-specific inefficiency can be regarded as an inherent or 
structural residual between observed data and the corresponding production 

‘Blackorby and Russell (1989) have recently discussed the shortcomings of the Allen-Uzawa 
elasticities vis-a-vis Morishima elasticities. However, the Allen-Uzawa elasticities of substitution 
continue to be the most widely used measure of substitution possibilities. 
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(or cost) frontier. Without violent changes in economic environments (i.e., 
deregulation), firm-specific efficiency and its relative ranking are not likely to 
change drastically over short time periods [Seale (1985)l. Another is that the 
comparison between the statistical and nonstatistical methodologies is 
substantially facilitated by this invariance assumption. Sickles, Good, and 
Johnson (1986), Cornwell, Schmidt, and Sickles (1990), and Kumbhakar 
(1990) have recently provided estimators that allow this to be a testable 
hypothesis. 

Since the expected value of the one-sided disturbance is nonzero, a 
reparameterization is necessary to insure that the composed error has zero 
mean. The corrected model is 

Yil=(--IL) +f(xjt7P) +(Pyu,) +L’j17 

where k is the mean value of U, and 

(5) 

Y,, = (-p) +f(&>P) -u’ + C,,? (6) 

where UT = (ui - CL). Thus the error terms L’~, and UT have zero mean. 
It is well-known that under certain conditions [Diewert (197411 either a cost 

frontier or a production frontier uniquely defines the true production tech- 
nology. Thus we also may estimate firm-specific efficiency using a stochastic 
frontier cost function which is often preferable on the basis of data availabil- 
ity and computational convenience. Recall that allocative efficiency is a 
maintained hypothesis in our analysis. Thus when using cost frontiers instead 
of production frontiers, the same arguments can be employed as above, 
except that the two error components change sign and are divided by the 
returns to scale. Since the cost function is by far the most widely estimated 
technological relationship, it will be used in our experiments. Throughout our 
study, we take the point of view shared by empirical modelers that we have 
incomplete information about the underlying technology and estimate techni- 
cal efficiency using approximate functional forms. These are defined as 
second-order differential approximations to an arbitrary twice continuously 
differentiable cost function that satisfies linear homogeneity and symmetry in 
input prices at any point in an admissible region. 

We consider three competing approximations for the cost function, the 
translog (TL) [Christensen, Jorgenson, and Lau (1971)], the CES-translog 
(CES-TL) [Pollak, Sickles, and Wales (1984)1, and the generalized Leontief 
(GL) [Diewert (19701. We write the m-input translog (TL) as 

lnc(y,w) =a,+a,lny+$~,,(lny)~+ Crv,lnwi 

++C Caijlnwilnwj+ Ca,ilnylnw,: 
i j i 

(7) 
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The CES-translog (CES-TL), combines the CES and TL [Pollak, Sickles, and 
Wales (1984)] and thus is a hybrid form. The advantage of the CES-TL is that 
it is compatible with a wider range of substitution possibilities than either the 
CES or the TL with only one additional parameter than the conventional TL. 
Moreover, the CES-TL appears to have better regional curvature properties 
than the TL [Pollak, Sickles, and Wales (1984), Gong and Sickles (198911. The 
CES-TL is given by 

[ 1 
l/(1 --LT) 

lnc(y,w) =cu,+a,lny+ln Cajw]-u 

i 

++C CPijlnwilnwj+ C6,jlnylnwj. (8) 
i j j 

The CES-TL input demand system and cost function reduce to those of the 
CES, if pij = rYYi = 0, Vi, j. When (+ = 1, the CES-TL input demand system 
reduces to that of the TL input demand system, and as u approaches one, its 
cost function approaches the TL’s. The final approximation we consider is 
the generalized-Leontief (GL), which we write as 

C(y,W) ‘YE C”ijW~‘2Wj’2+y2CO!iw!+ Cpiwi* (9) 
i j i i 

The GL form is nonhomothetic unless cxi = pi = 0, Vi, in which case it is 
linearly homogeneous. Thus the GL form is incapable of distinguishing 
among homotheticity, homogeneity, and linear homogeneity. If ‘yij = 0 for all 
i f j, then the GL collapses to a fixed proportions form. For all functions, 
symmetry and linear homogeneity were imposed with the appropriate para- 
metric restrictions. 

3. Three estimators and DEA 

3.1. Maximum likelihood estimator 

Like mle in previous stochastic frontier models, this estimator is based on 
several strong assumptions. First, the regularity conditions for the density 
functions are assumed to hold [Norden (1972,1973)]. Second, specific para- 
metric distributions for ui and oi, are assumed known. We choose distribu- 
tions that have enjoyed the most wide-spread use in empirical applications 
and specify uir as normal and ui as half-normal. Third, our likelihood 
derivation is based on the assumption that technical inefficiency is indepen- 
dent of inputs. Pitt and Lee (1981) first derived the likelihood function based 
on these assumptions. The density of the composed error wil = uit - ui is 
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given by 

‘P(wi17..*,wiT) = o('i) fig(@it + ui> d”,, 

where 

h(u,) = (25T’TU*)-“*cxp( _Ui/2Uu’), ui 2 0, 

(10) 

(11) 

and where g(u,,) is the normal density function with mean zero and variance 
a,?. Assuming independence across firms, the likelihood function is 

(12) 

Estimates of individual firm intercepts can be recovered from the esti- 
mated residuals by estimating their mean over time [Schmidt and Sickles 
(198411, 

1 
ii = G C&i,, i=l ,..., N, (13) 

where hii, = yit -f(X,,, &,,,J. The Li, serve as estimates of technical effi- 
ciency. If f(.> contains a constant term (&I, then we can use the fact that 
U, 2 0 to normalize the effects (ui) and the constant term @J. We define 
PO = max(li,) and define technical efficiency as ii = p^,, - si, i = 1,. . . , N. 
Thus the most efficient firm in the industry is counted as 100% efficient. If 
the density of u is nonzero in some neighborhood (0, K), K > 0, then the 
efficiency of the most efficient firm will approach 100% as N become large 
[Schmidt and Sickles (19841, Greene (198O)l. Consistency of PO and z?~ 
requires that N + ~0 and T + ~0. 

3.2. Generalized least squares estimator 

The estimation of technical efficiency using generalized least squares is 
based on two assumptions: (1) technical inefficiency is regarded as a nonneg- 
ative random effect and (2) technical inefficiency is uncorrelated with the 
inputs. We need not specify a parametric form for the density of the random 
inefficiency effects as with mle. 

Consider the variance-covariance matrix of the two component error 
vector w=VEC(o,,..., wN), where wi is a TX 1 vector of random ineffi- 
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ciency effects for the ith firm: 

E(ww’) =aUz(I,@UT) +a,‘l,,=LI, (14) 

where 1 is a T x 1 vector of 1’s. We use the Fuller and Battese (1973) 
transformation matrix, 

T 

P=I,- 1-2 .!L, 
i i Ul 

(15) 

where PP’ = a,?C’, PiPi = a,?Ll:‘, and u, = T. au2 + a,!. By applying the 
transformation P for all N x T observations of (6), the model becomes 

(Yit-YJi) =(l-Y>P+ [f(xi,?P, -YJ(xit3P)] +‘ir? (16) 
where 

r=l-? and ~~=T.u,,?+u,‘. 
fll 

Nonlinear least squares (nls) is then applied to (16). Construction of firm- 
specific technical efficiency estimates is the same as with mle. As with mle, 
consistent estimation of technical inefficiency requires large N and T. 

3.3. The within estimator 

Because we need not assume uncorrrelatedness of inputs and technical 
inefficiency, the within estimator may be more appealing than its statistical 
competitors. From (0, we regard ( - ui> as a fixed effect which is specific to 
the ith firm. The incidental parameters problem can be circumvented by 
using the within transformation [Arora (197311, i.e., apply nls after expressing 
the model in terms of deviations from individual firm means over time. The 
transformed model becomes: 

Yit-Yj= [f(xit7P) -.ftxit7P)] +“it-fii~ (17) 
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where 

1 
F; = 7 cc;, ) 

I 

or 

w,,=z(X,,,P) +c;,, 

where 

w,t =Y;I -Y;, 

(18) 

The within estimator is based on the application of nls to (18). Firm-specific 
technical efficiencies are again estimated by (13) and are consistent for large 
N and T. 

3.4. Data envelopment analysis (DEA) 

DEA is a mathematical programming approach introduced to measure the 
productive efficiency of decision-making units (DMU’s), or for our purposes 
firms. Charnes, Cooper, and Rhodes (1978,198l) proposed the following 
measure of efficiency based on the ratio of a single output to a single input. 
Consider a specific firm i at time t which is to maximize a ratio of a weighted 
S-vector of outputs &) to a weighted M-vector of inputs (Xi,) subject to the 
condition that similar ratios for every firm be less than or equal to unity: 

(19) 

subject to 

QTY,,/R“Xi, I 1) 

qs,rm>O, Vs,r, 

where the weight vectors Q = {qI,. . . , qs) and R = {rl,. . . , rM) are the 
ARGMAX of (19) whose solution can be based on the nonlinear, nonconvex, 
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and non-Archimedean fractional programming problem as formulated by 
Charnes and Cooper (1985). This later problem can be stated as: 

Magr,r$ze ( QTy,/RrXi,), (20) 

subject to 

QT~~/RTXi, I 1, 

- (QT~,)-‘~T 5 -dT, 

( -RT~j,)-l~T 5 -dT, 

Xjt, Y, > O, 

where E is a non-Archimedean infinitesimal. Using the Charnes-Cooper 
transformation of fractional programming, the primal linear programming 
problem (DEA) is set up to: 

Minimize (A - &ITs+- &1’s_), 
n,.&,s+,s- (21) 

subject to 

YA --s+= y.,, 

AXi, -XA --s-= 0, 

A,S+,S-2 0, 

y, > 0, Xi, > 0, Vi, t, 

MT= 1. 

The primal problem (21) minimizes the intensity (A) of the input under the 
constraint that the output vector xf is enveloped from above and the input 
vector Xi, is enveloped from below. After we carry out N X T optimizations 
we obtain solution values for the primal problem and utilize them in the 
measurement of firm-specific technical efficiency and production characteris- 
tics of the underlying technology. In order to determine the level of technical 
inefficiency we adopt the convention used by Charnes and Cooper (1985) in 
their Non&chime&an Theorem: a firm is technically efficient if, and only if, 
minimizing (or optimal) values of the primal problem satisfy A* = 1, s* + = 0, 
and s*-= 0, i.e., the intensity is unity and all slacks equal zero, where an 
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optimal solution to (21) is denoted by (A*, A*, s*+, s*-). Inefficient firms are 
projected onto their efficient frontier (or efficient facet) by means of the 
transformation, 

x;, + x;, = n*x,, - s* ~ and Y, -+ Y,; = Yif + s*+. (22) 

The movement from X,, to XL’, is a pure radial measure of inefficiency and 
indicates by how much inputs can be scaled down and still be able to produce 
the frontier level of output. Output slackness may still be in evidence, 
however, in that output(s) may still be increased without increasing input use. 
The differences, 

AX,,=X,,-X,!,=(l-A)X,,+s*- and Ay.t=yi:-Y,=s*+, 

(23) 

represent the estimated amounts of technical inefficiency at the point 
<Xi,, Yi,>. For the single-output technology considered herein, a necessary 
condition for output slackness is that the production function is piecewise 
linear and only weakly monotonic. Our data-generating process is based on a 
smooth production function that is strictly monotonic. Thus the output 
slackness variables (s*+> are zero and the (radial) technical inefficiency 
measure is completely characterized by a nonunitary intensity vector (A). We 
construct the index of technical inefficiency for a specific firm i as the mean 
value of inefficiency over time. The DEA estimate of technical inefficiency is 
then ai = T-‘C,[f(AX,,)], where f(.> is the true production function charac- 
terized in (1). Since DEA is a nonstatistical method, standard asymptotic 
arguments that apply to the consistency of technical inefficiency estimates 
using the three statistical methods above do not apply here, although in 
principle a weak law of large numbers argument should be applicable to 
prove weak convergence of the DEA estimate of technical inefficiency for 
large T. 

4. Design of experiments 

In our experiments we use the CRESH production function (2) to model 
the underlying true technology. We consider a technology that maps three 
inputs into a single output. Elsewhere [Gong and Sickles (198911 we have 
examined in depth the performance of stochastic panel frontiers across a 
wider range of technologies than those considered in this paper. Here we 
limit the range of technologies to one that exhibits constant return to scale 
and for which the off-diagonals of the AES matrix are the same, with input 
substitution ranging between 3.03 and 0.333. We do this because direct 
comparisons between DEA and SF are somewhat clouded by the treatment 
of scale economies and diseconomies and because our findings for the class 
of technologies considered here are quite similar to results based on an 
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Table 1 

Comparison of stochastic frontier models based on correlation coefficient between true and 
estimated relative efficiency levels.” 

True technology 

1. p = - 0.67 (or2 = ~,a = r2a = 3.03) 
Within 
GLS 
MLE 

2. p = - 0.5 (a,, = (r13 = g*s = 2.00) 
Within 
GLS 
MLE 

3. p = - 0.25 co,* = (r,3 = (Ta3 = 1.33) 
Within 
GLS 
MLE 

4. p = + 0.1 (u,* = (r*s = (Tas = 0.90) 
Within 
GLS 
MLE 

5. p = + 2.0 (a,* = 013 = (Tza = 0.33) 
Within 
GLS 
MLE 

CES-TL 

Functional form 

TL 

0.967 (0.011 Jh 0.973 (0.007) 
0.967 (0.011) 0.976 (0.010) 
0.980 (0.006) 0.971 (0.012) 

0.981 (0.006) 0.977 (0.006) 
0.981 (0.006) 0.973 (0.011) 
0.985 (0.005) 0.975 (0.007) 

0.992 (0.010) 0.988 (0.003) 
0.981 (0.006) 0.967 (0.011) 
0.982 (0.026) 0.957 (0.113) 

0.966 (0.011) 0.991 (0.003) 
0.966 (0.011) 0.967 (0.002) 
0.987 (0.003) 0.951 (0.136) 

0.976 (0.007) 0.360 (0.165) 
0.976 (0.007) 0.302 (0.102) 
0.972 (0.005) 0.396 (0.147) 

GL 

0.726 (0.068) 
0.725 (0.068) 
0.726 (0.068) 

0.631 (0.085) 
0.632 (0.085) 
0.533 (0.229) 

0.632 (0.086) 
0.619 (0.091) 
0.631 (0.087) 

0.802 (0.049) 
0.801 (0.048) 
0.801 (0.050) 

0.985 (0.005) 
0.985 (0.005) 
0.985 (0.005) 

“Experiments are conducted with T = 30 and N = 50. 
bValues in parentheses are sample standard deviations of the correlation coefficients. 

examination of a set of technologies exhibiting more complicated substitution 
and/or complementarity patterns, which results are available from the au- 
thors on request. The results reported in tables l-10 are based on 50 
replications with the number of cross-sections fixed at 50 and the number of 
time periods varying between 10 and 50. We have fixed 8 = 0, y = 1, 6, = 6, 
= 0.3, and S, = 0.4. The inputs are drawn from a lognormal distribution and 
fixed throughout an experiment, as with Guilkey, Lovell, and Sickles (1983). 
The uit are i.i.d. N(0, a,?). For all simulations except those reported in tables 
9 and 10, the ui are half-normal [i.e., ui = 1&l where & is NIDCO, ai)] for 
each experiment and are constant over time. In order to consider cases in 
which noise in the generated data may confound the measurement of 
technical inefficiency as well as the situation in which technical inefficiency 
dominates statistical noise, we allow CT: to vary (a: = 1.03, 5.15, 15.45) while 
fixing the variance of statistical noise, a:, at 0.515.4 

4As a,‘/~,’ + m, (1) becomes a full frontier. As oU2/a,* --) 0, (1) becomes a stochastic produc- 
tion function with no technical inefficiency. 
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Table 2 

Comparison of stochastic frontier models based on rank correlation coefficient of true and 
estimated efficiency levels.” 

True technology CES-TL 

1. p = -0.67 (a,, = fl,3 = cz3 = 3.03) 
Within 
GLS 
MLE 

2. p = - 0.5 (u,* = V,3 = V23 = 2.00) 
Within 
GLS 
MLE 

0.959 (0.012P 
0.958 (0.012) 
0.967 (0.011) 

0.973 (0.010) 
0.972 (0.010) 
0.972 (0.012) 

0.986 (0.004) 
0.972 (0.010) 
0.971 (0.033) 

0.969 (0.009) 
0.969 (0.008) 
0.977 (0.010) 

0.979 (0.007) 
0.979 (0.007) 
0.978 (0.007) 

3. p = -0.25 b,z = cr,3 = a*3 = 1.33) 
Within 
GLS 
MLE 

4. p = +0.1 (a,* = (T,3 = c*3 = 0.90) 
Within 
GLS 
MLE 

5.p= +2.0(a,*=a,,=a,,=0.33) 
Within 
GLS 
MLE 

“See footnote a on table 1. 
hSee footnote b on table 1. 

Functional form 

TL 

0.958 (0.017) 
0.961 (0.015) 
0.943 (0.079) 

0.963 (0.014) 
0.959 (0.015) 
0.960 (0.015) 

0.979 (0.008) 
0.958 (0.017) 
0.933 (0.142) 

0.983 (0.008) 
0.958 (0.006) 
0.937 (0.145) 

0.330 (0.539) 
0.299 (0.477) 
0.122 (0.350) 

CL 

0.726 (0.070) 
0.725 (0.070) 
0.715 (0.107) 

0.655 (0.086) 
0.657 (0.086) 
0.535 (0.277) 

0.653 (0.090) 
0.658 (0.094) 
0.655 (0.092) 

0.764 (0.051) 
0.763 (0.051) 
0.756 (0.056) 

0.974 (0.013) 
0.970 (0.013) 
0.970 (0.013) 

We generate the output observations by 

yi, eoy~~ = (6,x( l)il”’ + 82x(2)I;P2 + Sjx(3),;P1)-y’P + ~1,~ - ui. (24) 

Under the assumption that each firm is a profit-maximizer, normalized input 
prices are generated by means of 

W( k)i, = epey~~( 1 + By,,)- 
, YSkPk 

--xX( g;(‘+-) 
P 

(25) 
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Table 3 

273 

Comparison of stochastic frontier models and DEA based on correlation coefficient between 
true and estimated relative efficienciesa 

True technology T= 10 

1. p = - 0.67 (a,, =o,~ = crz3 = 3.03) 
Within 
GLS 
MLE 
DEA 

0.937 (0.023jb 
0.938 (0.022) 
0.870 (0.190) 
0.744 (0.120) 

2. p = - 0.5 (Cl2 = (T,3 = (Tz3 = 1.33) 
Within 
GLS 
MLE 
DEA 

3ti;h;n- 0.25 (u,* = o,~ = rz23 = 1.33) 

GLS 
MLE 
DEA 

4. p = + 0.1 (o*2 = (+*3 = (Tz3 = 0.90) 
Within 
GLS 
MLE 
DEA 

5. p = +2.0( u,z = (T,3 = 023 = 0.33) 
Within 
GLS 
MLE 
DEA 

0.960 (0.014) 
0.960 (0.014) 
0.928 (0.013) 
0.719 (0.118) 

0.974 (0.008) 
0.960 (0.014) 
0.938 (0.149) 
0.707 (0.133) 

0.918 (0.034) 
0.918 (0.034) 
0.827 (0.068) 
0.755 (0.076) 

0.943 (0.020) 
0.944 (0.022) 
0.940 (0.011) 
0.665 (0.110) 

T=30 

0.967 (0.011) 
0.967 (0.011) 
0.980 (0.006) 
0.870 (0.044) 

0.981 (0.006) 
0.981 (0.006) 
0.985 (0.005) 
0.843 (0.052) 

0.992 (0.010) 
0.981 (0.006) 
0.982 (0.026) 
0.816 (0.059) 

0.966 (0.011) 
0.966 (0.011) 
0.987 (0.003) 
0.869 (0.043) 

0.976 (0.007) 
0.976 (0.007) 
0.972 (0.005) 
0.788 (0.236) 

T=50 

0.983 (0.006) 
0.983 (0.006) 
0.989 (0.003) 
0.897 (0.043) 

0.990 (0.003) 
0.990 (0.003) 
0.991 (0.003) 
0.866 (0.057) 

0.995 (0.002) 
0.990 (0.003) 
0.993 (0.001) 
0.788 (0.097) 

0.985 (0.003) 
0.985 (0.003) 
0.943 (0.007) 
0.802 (0.058) 

0.991 (0.003) 
0.991 (0.003) 
0.989 (0.001) 
0.701 (0.179) 

“The stochastic frontier results reported here are based on the CES-TL functional form. 
bSee footnote b in table 1. 

Cost data is then obtained by 

c(Yi,esy”,W(1)ir,w(2)i,,w(3)i1)= CW(k)i*x(k)T,, 
k 

where x(k):, k = 1,2,3, are the technically inefficient levels of the inputs. 
They are derived by proportionately increasing the x(kIi, until the determin- 
istic portion of (24) has increased by the amount of the technical inefficiency 
ui. Thus the difference between x(k$, and x(k): represents the amount by 
which inputs could be shrunk and still produce average frontier output. 

5. Results 

In this section we first compare mle, gls, and within as we vary the 
(assumed) functional form of the production function, the (estimated) ap- 
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Table 4 

Comparison of stochastic frontier models and DEA based on rank correlation coefficient of true 
and estimated efficiency levels.” 

True technology T= 10 T = 30 

1. p = -0.67 ((T,> = ~,s = (rz3 = 3.03) 
Within 
GLS 
MLE 
DEA 

0.920 (0.034)’ 0.959 (0.012) 
0.920 (0.036) 0.958 (0.012) 
0.852 (0.216) 0.967 (0.011) 
0.657 (0.105) 0.814 (0.062) 

2. p = - 0.5 (arz = (T,s = g2s = 2.00) 
Within 
GLS 
MLE 
DEA 

0.949 (0.023) 0.973 (0.010) 
0.949 (0.023) 0.972 (0.010) 
0.910 (0.014) 0.972 (0.012) 
0.629 (0.111) 0.775 (0.880) 

0.982 (0.007) 
0.981 (0.008) 
0.983 (0.007) 
0.825 (0.071) 

3. p = - 0.25 to,* = c ,s = V2s = 1.33) 
Within 
GLS 
MLE 
DEA 

0.971 (0.012) 0.986 (0.004) 
0.949 (0.023) 0.972 (0.010) 
0.930 (0.142) 0.971 (0.033) 
0.600 (0.132) 0.738 (0.082) 

0.991 (0.003) 
0.981 (0.007) 
0.989 (0.006) 
0.748 (0.098) 

4. p = + 0.1 to,* = (T,s = VI3 = 0.90) 
Within 
GLS 
MLE 
DEA 

0.932 (0.032) 0.969 cO.OOY) 
0.933 (0.032) 0.969 (0.008) 
0.809 (0.093) 0.977 (0.010) 
0.763 (0.073) 0.882 (0.044) 

0.982 (0.009) 
0.982 (0.010) 
0.783 (0.087) 
0.783 (0.087) 

5. p = + 2.0 (a 12 = ‘T,s = (Tz3 = 0.33) 
Within 
GLS 
MLE 
DEA 

0.951 (0.019) 0.979 (0.007) 
0.951 (0.020) 0.979 (0.007) 
0.933 (0.012) 0.978 (0.007) 
0.611 (0.123) 0.734 (0.115) 

“The stochastic frontier results reported here are based on the CES-TL functional form 
‘See footnote b in table 1. 

0.987 (0.005) 
0.987 (0.005) 
0.976 (0.004) 
0.725 (0.101) 

T=50 
___ ~~ 

0.972 (0.011) 
0.972 (0.011) 
0.981 (0.007) 
0.872 (0.05 1) 

Table 5 

Comparison of stochastic frontier estimators and DEA when there is correlation between input 
levels and technical inefficiency (correlation coefficients used to measure performance).” 

c = O.Ob c= 0.1 c = 0.5 c= 1.0 

Within 0.937 (0.023)’ 0.799 (0.144) 0.578 (0.192) 0.462 (0.180) 
GLS 0.938 (0.022) 0.793 (0.142) 0.548 (0.186) 0.414 (0.172) 
MLE 0.870 (0.190) 0.655 (0.299) 0.433 (0.321) 0.352 (0.318) 
DEA 0.744 (0.120) 0.738 (0.092) 0.763 (0.102) 0.755 (0.093) 

_ 
“Results are based on technology #l from table 1 with T= 10. The CES-TL is used to 

estimate the stochastic frontier. 
hAverage correlations between the inputs and technical inefficiency that correspond to 

different values of C are 0.0, - 0.21, - 0.24, - 0.37 and are based on (27). 
‘See footnote b in table 1. 



B.-H. Gong and R.C. Sickles, Performance of SF and DEA using panel data 275 

Table 6 

Comparison of stochastic frontier estimators and DEA when there is correlation between input 
levels and technical inefficiency (rank correlation coefficients used to measure performance).” 

c = O.Oh C=O.l c = 0.5 c= 1.0 

Within 0.920 (0.034)’ -- 0.740 (0.117) 0.514 (0.129) 0.402 (0.120) 
GLS 0.920 (0.036) 0.731 (0.117) 0.482 (0.130) 0.352 U.t.133) 
MLE 0.852 (0.216) 0.657 (0.297) 0.410t0.311) 0.291 (0.320) 
DEA 0.657 (0.105) 0.677 (0.101) 0.705 (0.092) 0.690 (0.101) 

“Results are based on technology #l from table 1 with T= 10. The CES-TL is used to 
estimate the stochastic frontier. 

bAverage correlations between the inputs and technical inefficiency that correspond to 
different values of C are 0.0, -0.21, -0.24, -0.37 and are based on (27). 

‘See footnote 1 in table 1. 

Table 7 

Effects of the stochastic structure of technical inefficiency on the performance of stochastic 
frontier and DEA technical inefficiency measurement (correlation coefficient used to measure 

Half-normal 

Within 0.937 (0.023)h 
GLS 0.938 (0.022) 
MLE 0.870 (0.190) 
DEA 0.744 (0.120) 

aResults are based on technology 
estimate the stochastic frontier. 

bSee footnote b in table 1. 

performance).” 
__________. 

Exponential Gamma 

0.966 (0.010) 0.971 to.01 1) 
0.966 (0.010) 0.985 (0.021) 
0.862 (0.011) 0.817 (0.255) 
0.824 (0.070) 0.854 (0.091) 

#l from table 1 with T= 10. The CES-TL is used to 

Table 8 

Effects of stochastic structure of technical inefficiency on the performance of stochastic frontier 
and DEA technical inefficiency measurement (rank correlation coefficient used to measure 

performance).” 

Half-normal Exponential Gamma 

Within 0.920 (0.034) 
GLS 0.920 (0.036) 
MLE 0.852 (0.216) 
DEA 0.657 (0.105) 

“Results are based on technology 
estimate the stochasic frontier. 

bSee footnote b in table 1. 

0.929 (0.034) 0.932 (0.001) 
0.929 (0.033) 0.966 (0.002) 
0.832 (0.125) 0.71 I (0.357) 
0.650 (0.094) 0.732 (0.103) 

#l from table 1 with T= 10. The CES-TL is used to 
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Comparison of 
the ratio of the 

Table 9 

stochastic frontier and DEA technical inefficiency measurements while varying 
variance of technical inefficiency to statistical noise (correlation coefficient used 

to measure performance).” 

Time R=2 R= 10 R = 30 

10 SFh 0.937 (0.023)’ 0.973 to.008) 0.976 (0.007) 
DEA 0.744 (0.120) 0.868 (0.051) 0.905 (0.034) 

30 SF 0.967 (0.011) 0.990 (0.003) 0.991 (0.003) 
DEA 0.870 (0.044) 0.931 to.01 7) 0.945 (0.014) 

50 SF 0.983 (0.006) 0.995 (0.001) 0.995 (0.001) 
DEA 0.897 (0.043) 0.944 (0.014) 0.956 (0.010) 

~~_ ._ _ _ .~___ 
“R = cr;/a,= where cc2 = 1.03 and u, = l[,I. Results are based on technology #l from table 1 

with T= 30. 
hStochastic frontier results are based on the within estimator using the CES-TL cost function. 
‘See footnote b in table 1. 

Table 10 

Comparison of stochastic frontier and DEA technical inefficiency measurements while varying 
the ratio of the variance of technical inefficiency to statistical noise (rank correlation coefficient 

used to measure performance).” 

Time R=2 R= 10 R = 30 

10 SFh 0.920 (0.034)’ 0.968 (0.014) 0.974 (0.011) 
DEA 0.657 (0.105) 0.851 (0.052) 0.913 (0.033) 

30 SF 0.959 (0.012) 0.982 (0.006) 0.985 (0.006) 
DEA 0.814 (0.062) 0.934 (0.001) 0.964 (0.014) 

50 SF 0.972 (0.011) 0.990 (0.004) 0.992 (0.004) 
DEA 0.872 (0.051) 0.959 (0.018) 0.978 (0.010) 

“R = a:/~,? where oc ’ = 1 03 and u = I[,(. Results are based on technology #l from table 1 , 
with T= 30. 

bStochastic frontier results are based on the within estimator using the CES-TL cost function. 
‘See footnote b in table 1. 

proximating form for the cost function, the number of time periods, the 
relative variance of technical (ui> to stochastic (ui,) error [~$/a,!, where 
ui = jeij and ei is NID(0, a:>], the density of the underlying stochastic 
inefficiency (~~1, and the correlation between the regressors and stochastic 
inefficiency. We next compare the performance of SF and DEA. The most 
technically efficient firm in the sample is normalized by SF and DEA to be 
100% efficient. We summarize the performance of alternative estimators of 
technical inefficiency using the correlation and rank correlation coefficient 
between true and estimated inefficiencies. These summary statistics measure 
the relationships that are of central importance to this paper, i.e., the degree 
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to which statistical and nonstatistical efficiency estimates are in concordance 
with the true data-generating process. The correlations also allow us to 
condense a substantial amount of information concerning sets of technical 
inefficiency estimates of 50 firms into a manageable number of tables.5,6 

Tables 1 and 2 provide correlations and rank correlations between the true 
and estimated relative efficiency levels as we vary the true technology, the 
cost function’s functional form, and the estimator. None of the estimating 
forms are self-dual to the primal functional form of the production function, 
but rather are approximations whose performance cannot be evaluated 
analytically, unless we estimated the primal directly or utilized self-dual 
forms such as the Cobb-Douglas or CES. We assume that the distribution of 
inefficiency has been properly specified in the likelihood equation and that 
there is no correlation between the regressors and inefficiency. We normalize 
the variance of technical inefficiency (ai> so that a$/~,? = 2.0, where ui = 15, I. 
Tables 9 and 10 consider experiments in which this ratio varies from 2.0 to 
30.0. 

Our results indicate that there is no particular advantage of mle or gls over 
the within estimator, which is attractive on a priori grounds in that it makes 
no assumption that the firm effects and regressors in the cost dual are 
uncorrelated and does not assume a parametric form for the mixture distri- 
bution. Our results also indicate that the performance of stochastic frontier 
models depends on the structure of the underlying technology, since any bias 
that may be introduced by employing an inappropriate functional form will 
distort efficiency measurement. Evidence on the fairly simple technologies 
reported here indicate that, except for the case close to a fixed coefficient 
technology, the performance of the CES-TL and the TL dominates the GL 
over a wide range of relatively simple technologies. As the underlying 
technology approaches the Leontief, however, we find that the GL does a 
relatively better job of estimating firm-specific technical efficiency than the 
CES-TL or the TL. The performance of the TL also deteriorates markedly in 
the case of a fixed coefficient technology. These results have some intuitive 
appeal. The Cobb-Douglas is the only CES form compatible with the TL 
form. The CES-TL provides a transparent generalization of the CES and the 
TL and outperforms the TL except for a special case of the underlying 
technology, Cobb-Douglas. The GL is better than the two other forms in the 
characterization of a tixed coefficients underlying technology. Thus, in 
stochastic frontier models the choice of the proper functional form to 

‘Estimates of technical efficiency from the stochastic frontier model could presumably be 
refined by utilizing distributional assumptions on U, after estimation. This would be done using 
the conditional estimator considered by Jondrow et al. (1982) and Battese and Coelli (1988). 
Whether or not this would have much effect on the performance of the mle estimator in these 
experiments is unclear. The authors wish to thank Peter Schmidt for pointing this out to us. 

6More detailed results are available from the authors on request. 
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characterize an underlying technology is important in deriving unbiased 
information about firm-specific technical inefficiency. Based on the results 
provided here and elsewhere [Pollak, Sickles, and Wales (1984), Gong and 
Sickles (1989)], the CES-TL would appear to provide better estimates of the 
inefficiency characteristics of technology over a wider range of the space of 
technologies than either the TL or the GL. 

Tables 3 and 4 provide comparisons of the three SF estimators as we vary 
the time period over which technical inefficiency is assumed constant. In 
these and subsequent tables we use the CES-TL as the estimating form for 
the cost function. We note that all three SF estimators provide relative 
technical inefficiency estimates and rankings that are in strong concordance 
with the data-generating process across this set of relatively simple technolo- 
gies as T increases, although gls and mle appear to improve relatively more 
as we move from samples of T = 10 to those of T = 50. The pattern of these 
results are quite similar when more complicated technologies are considered. 
We note, however, that the reliance of the consistency of relative technical 
inefficiency estimates on large T is a shortcoming of all three estimators since 
the assumption that technical inefficiency is time-invariant is more problem- 
atic as we increase the length of our panel. 

We next turn to the effect that correlation between input levels and 
technical inefficiency may have on the relative performance of the mle, gls, 
and within SF estimators. Tables 5 and 6 consider a technology in which 
substitution possibilities are relatively easy (AES = 3.03). We assume that the 
dependence of inputs two and three on technical inefficiency takes the form 

i(2)it = (l + c/u,)x(2);t, i(3)i, = (1 + 2C/ui)x(3)i,, (27) 

and thus the relative differences between uncorrelated and correlated inputs 
is an increasing function of C and inversely related to the level of technical 
inefficiency. The time period is fixed at T = 10 and C takes on values of 0.0, 
0.1, 0.5, and 1.0, corresponding to average sample correlations between these 
two inputs and technical inefficiency of 0.0, - 0.21, - 0.24, and - 0.37. As the 
magnitudes of the correlations increase, the performance of all SF estimators 
deteriorate noticeably. This is somewhat counterintuitive since the within 
transformation is designed to remove the correlation and so should be robust 
to this type of misspecification. Were we estimating the production function 
this reasoning would be correct. However, introducing correlation between 
technical inefficiency and the level of inputs means that technical inefficiency 
is no longer neutral and thus normalized prices based on (25) correspond to 
nonneutral and hence nonradial technical inefficiency. This is an important 
issue. Such correlations as these distort the measurement of technical effi- 
ciency based on the cost dual since prices correspond to inputs that are both 
allocatively and technically inefficient relative to the data-generating process 
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that assumes no such correlation. It is also important to note that economet- 
ric approaches to estimating frontier cost functions may well loose any 
advantage over programming approaches such as DEA when such correlation 
patterns exist in the data. The correlations used in our experiments are 
rather small, ranging from -0.21 to -0.37, but even with such relatively 
benign levels of correlation DEA measures of technical efficiency are much 
closer to the true levels than those estimated from stochastic frontier cost 
equations. 

An alternative experimental design could have been adopted in which 
efficiency was measured relative to the cost function instead of the (nonself- 
dual) production function. In this case one of our findings - that all of the 
stochastic frontier estimators performed relatively poorly when correlation 
between inefficiency and regressors increased - would certainly be different. 
In particular, the within estimator for cost function stochastic frontiers 
eliminates this type of misspecification while mle and gls do not, thus 
enhancing the appeal of within SF estimates vis-a-vis those obtained from 
DEA. 

We next vary the structure of technical inefficiency and assess its affect on 
the three SF estimators. Tables 7 and 8 consider the same technology as we 
considered in tables 3 and 4 with T = 10. Results for panel designs with 
larger numbers of time series observations are in general qualitatively quite 
similar to those considered in these tables. In addition to the half-normally 
distributed technical inefficiency considered in tables 1-4, we also consider 
exponential and gamma distributed technical inefficiency. The distributions 
are parameterized so that the mean levels of technical inefficiency are the 
same, although the variances do differ, with the variances for the exponential 
and gamma somewhat larger than for the half-normal.’ The likelihood 
function is constructed under the assumption that technical inefficiency is 
half-normal. The within and gls estimators are effectively the same for the 
half-normal and exponential case while gls provides a slight advantage over 
within when technical efficiency is gamma distributed. When the underlying 
mixture is properly specified mle is no better than either within or gls, 
although the relative ranking of mle switches as the time series is lengthened 
which is consistent with asymptotic theory. Both gls and within dominate mle 
when the mixture density is misrepresented. We would conclude that the 
within estimator is preferred on a priori grounds and on the basis of our 
experimental results. 

‘Our base case assumes that 5, is NIDCO, 1.03). Thus u, = l,$il has mean 0.810 and variance 
0.37. For the exponential distribution the mean is 0.810 and the variance is 0.656. We use a 
special case of the gamma distribution [Greene (1980), Stevenson (198011 with shape parameter 
equal to unity. We set the mean of the gamma distribution at 0.810. A unitary shape parameter 
forces the variance to also equal 0.810. 
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We next consider the relative performance of SF and DEA. In tables 3 and 
4 we examine the relative merits of DEA and different estimators of the SF 
model as we vary the number of time periods and the underlying technology. 
Comparisons between DEA and different SF flexible forms can also be made 
by focusing on results for T = 30 in tables 3 and 4 and in those from tables 1 
and 2. Across the technologies considered here the CES-TL consistently 
outperforms DEA using our performance metrics. There are, however, a 
number of situations in which DEA either dominates or is comparable to the 
TL or GL. In particular, for all cases except when the technology becomes 
close to fixed coefficients (technology #5), DEA outperforms the GL stochas- 
tic frontier, and it outperforms the TL and presumably its nested special 
case, the Cobb-Douglas which has been used so often in stochastic frontier 
applications for technology #5. There is a convergence of sorts between the 
two methodologies as the number of time periods increases in that the 
relative differences between the CES-TL SF and DEA fall. However, as we 
have mentioned above, in applied work the assumption of time invariance in 
efficiency levels and rankings becomes more difficult to justify as we lengthen 
the time series. 

Tables 9 and 10 consider the effects of changes in the ratio of the variance 
of technical inefficiency to statistical noise and the number of time periods 
using the CES-TL within estimator and using DEA. DEA assumes that the 
data are free from the usual types of statistical noise, such as measurement 
error or the effects of omitted inputs. In such cases statistical noise may be 
labelled as inefficiency and thus the performance of DEA may be contami- 
nated by its presence. We can see from the tables that as the number of time 
periods increases, the relative performance of both methods improves 
markedly as we would expect since the efficiency measures are based on 
sample means over time. We can also see that as the variance of inefficiency 
increases relative to statistical noise, the gap between the performance 
metrics for the two methods narrows substantially. On the basis of results 
from tables 5 and 6 it is clear that DEA is not sensitive to variations in the 
degree of the correlation between inputs and technical inefficiency since 
DEA does not use the contaminated price data. For these relatively simple 
technologies the results can be taken as encouraging evidence of DEA’s 
viability vis-a-vis SF cost models. Tables 7 and 8 reveal a similar robustness of 
DEA to variations in the stochastic structure of technical inefficiency, al- 
though given the distribution-free nature of DEA it may seem surprising that 
there is any variation in DEA’s performance as we vary the distribution of 
technical inefficiency. However, as pointed out above, the variance of techni- 
cal inefficiency for the exponential and our parameterization of the gamma is 
forced to vary as we maintain a constant average level of technical ineffi- 
ciency (footnote 7). That DEA appears to improve somewhat‘in tables 7 and 
8 as we move from the half-normal to the gamma and from the exponential 
to the gamma is most likely due to the increase in the variance of technical 
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inefficiency between these two sets of inefficiency distributions while holding 
the variance of statistical noise constant. As the results of tables 9 and 10 
suggest, DEA should improve vis-a-vis SF when the ratio of the variance of 
technical inefficiency to stochastic noise increases and this is precisely the 
case in tables 7 and 8, with the ratios at 0.718, 1.27, and 1.57 for the 
half-normal, exponential, and gamma, respectively. That a similar relative 
improvement in DEA does not occur when we move from the half-normal to 
the exponential in table 8 may be an artifact of the relative variations of rank 
correlation coefficients for the two sets of experiments. 

6. Conclusion 

This paper has analyzed how well stochastic frontier and data envelopment 
methodologies estimate firm-specific technical inefficiency. To overcome the 
limitations of the bulk of previous comparative research we have utilized 
Monte Carlo techniques and have extended our comparative study to several 
plausible cases of misspecification. We summarize the results and their 
economic implications as follows: 

(1) The choice of functional form in stochastic frontier models appears to 
be crucial. The CES-TL outperforms other competing parametric forms 
considered here and DEA over a wide range of the underlying technologies. 
Except for the case close to a fixed coefficient technology, DEA outperforms 
the GL. For the case close to a fixed coefficient technology DEA dominates 
the TL. 

(2) Efficiency estimates using the within estimator are very similar to the 
gls and mle SF estimators. We can ameliorate two common problems of 
previous stochastic frontier models with the within estimator. That is, we do 
not have to assume an arbitrary structure for the distribution of technical 
inefficiency in order to separate statistical noise and technical inefficiency 
and we need not assume that input levels and technical inefficiency are 
uncorrelated. However, when using the cost dual as we do in our experi- 
ments, prices that correspond to profit-maximizing levels of the technically 
inefficient input levels are not those that support a radial measure of 
technically inefficient input use. Thus the within transformation does elimi- 
nate potential correlation of prices and technical inefficiency from the cost 
function, but the correlation of technical inefficiency and input levels intro- 
duces nonradial allocative inefficiency which cannot be identified by any of 
the SF estimators using the contaminated price data. 

(3) DEA does not rely on price data to construct the efficient frontier. 
Thus when the researcher suspects that correlations may exist between 
technical inefficiency and certain inputs, DEA may well be preferred over SF 
cost functions on a prior’ grounds. In this case the SF production function 
should be estimated directly using the within estimator, or a suitable instru- 
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mental variables analogue [Cornwell, Schmidt, and Sickles (199011. If, on the 
other hand, the correlation is suspected to be between input prices which 
support the radial measure of technical inefficiency and technical inefficiency 
itself, then the within estimator should be used on the SF cost function. Since 
the applied researcher rarely has such foreknowledge, DEA can have sub- 
stantial appeal. 

(4) In contrast to previous DEA studies, we assume that the panel of firms 
contain a certain amount of statistical noise and allow DEA’s performance to 
depend on the ratio of technical inefficiency to statistical noise as well as the 
number of time periods. The presence of statistical noise plays an important 
role in DEA which assumes a deterministic frontier. As the time periods 
increases, however, the effect of statistical noise on DEA efficiency measure- 
ment is mitigated. 

We hope that the results of our Monte Carlo analyses will be informative 
to the applied researcher interested in the choice of appropriate methods 
with which to estimate firm-specific inefficiency. Our results are based on 
what we believe to be a representative experimental design. We note how- 
ever that (1) the known underlying technology is assumed to be a CRESH 
production function, (2) the generated data are assumed to contain statistical 
noise, (3) the data are assumed to be from a panel in which firm-specific 
technical inefficiency is constant over time, and (4) technical inefficiency is 
assumed to have particular nonnegative distributions. Although we feel that 
these are reasonable assumptions on which to base our data construction, we 
cannot discount the possibility that our findings would change if the experi- 
mental design were altered or if a wider range of technologies were consid- 
ered. However, our experimental evidence suggests that the tracking ability 
of either SF or DEA deteriorates rapidly as the underlying technology 
becomes more complex. Thus our caveats on the shortcomings of various 
estimators under various forms of misspecification are most likely conserva- 
tive. 
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