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Abstract—Failure to properly treat heterogeneity components
in longitudinal analyses can result in an incorrect parameteri-
zation of the duration model. Estimation bias is not limited to
duration dependence but also extends to the structural pa-
rameters. Our paper uses Monte Carlo methods to examine
the finite sample behavior of three estimators for this prob-
lem: nonparametric maximum likelihood, maximum penalized
likelihood, and the probability simulator. Our results on the
estimators’ finite sample behavior for this class of model add
to limited experimental evidence. They highlight the estima-
tors’ computational feasibility and point to their relative
strengths in empirical duration modeling.

I. Introduction

HE presence of unobservable individual ef-

fects in models of duration (survivor) hazards
is problematic when the underlying hazard ex-
hibits duration dependence (Lancaster and
Nickell, 1980; Lancaster, 1979; Neyman and Scott,
1948). Theoretical treatments (Simar, 1976; Laird,
1978; Lindsay, 1983a,b; Heckman and Singer,
1984; Manton, Stallard, and Vaupel, 1986) have
provided ways to control for unobserved hetero-
geneity using a mixture probability density. Two
estimation approaches have distinguished them-
selves in the literature: the nonparametric ap-
proach of Heckman and Singer (1984) and the
sufficient statistic method of Andersen (1970).
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Heckman and Singer adopted a nonparametric
method to identify an unobserved distribution
from a mixed distribution assuming random ef-
fects, while Andersen used sufficient statistics to
avoid the incidental parameters problem in as-
suming fixed effects. Andersen’s application of
conditional likelihood, which estimates structural
parameters conditional on sufficient statistics for
unobserved fixed effects, has had limited appeal
due to the difficulty in finding the sufficient statis-
tics for particular applications.

In this paper, we consider two additional esti-
mators for the survivor model with heterogeneity:
maximum penalized likelihood estimation and the
simulated frequency method. Maximum penal-
ized likelihood provides estimates of the mixed
joint density while smoothing the influences of
unobserved heterogeneity.! The probability simu-
lator maximizes the log likelihood of simulated
relative frequencies of duration times based on
axioms that describe the data generating process.
Discontinuities in the objective function are
smoothed using kernel based procedures. The
main objective of the paper is to examine the
finite sample performance of these estimators
using Monte Carlo analysis.

In the next section we outline the mass point
method and its extension to the finite mixture
model considered by Heckman and Singer. Sec-
tion III presents the maximum penalized likeli-
hood estimator and outlines algorithms that can
be used to implement it in duration modeling.

! For the use of the maximum penalized likelihood estima-
tor as well as the Heckman and Singer and maximum likeli-
hood alternatives in studies of mortality and its economic
determinants, see Behrman, Sickles, and Taubman (1988,
1990) and Behrman, Sickles, Taubman, and Yazbeck (1991).
These studies extended the work of Sickles and Taubman
(1986) in which individual heterogeneity was introduced into a
joint model of leisure and morbidity and of Sickles (1989)
which reviewed various treatments for heterogeneity in simul-
taneous limited dependent variable systems.
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Section IV outlines how the prol;ability simulator
can be set up to handle mixture densities based
on axioms that govern the behavior of the data
generating process. This estimator was intro-
duced by Lerman and Manski (1981) and first
discussed in the survivor model context by
Thompson, Atkinson, and Brown (1987). It has
been recently analyzed in depth by Gourieroux
and Monfort (1992), McFadden (1989) and Pakes
and Pollard (1989). The nonparametric maximum
likelihood and maximum penalized likelihood
methods yield equivalent consistent estimators in
large samples, while the simulated probability
estimator, under certain assumptions about the
number of simulated draws, is a multinomial max-
imum likelihood estimator when the underlying
stochastic process has been correctly specified.
However, finite sample evidence on these three
estimators’ comparative performance is quite lim-
ited for this class of model, due in part to the
substantial nonlinearities intrinsic to the model
and to the treatments for unobserved heterogene-
ity. We address these issues in section V, in which
we present the data generation design and results
from a series of Monte Carlo experiments that
assess the relative performance of the nonpara-
metric maximum likelihood estimator (NPMLE),
the maximum penalized likelihood estimator
(MPLE), and the simulated frequency method
(SFM) for the duration model with heterogeneity.
We use the Weibull as our experimental baseline
hazard, in part because of its ubiquitous use in
applied work and also because it is the only
distribution that can generate both a proportional
hazard and an accelerated time to failure model.
Section VI concludes.?

II. Treatments of Unobserved
Heterogeneity Based on Mass Point
Methods

We begin with some preliminaries on the speci-
fication of the marginal likelihood for single-spell
models when the density of duration times is

2 The focus of our research is on estimators of compound
processes. However, a number of authors have pointed out
that focusing attention on the mixing heterogeneity distribu-
tion at the expense of a richly parameterized baseline dura-
tion distribution may have serious specification error conse-
quences. (Behrman, Sickles and Taubman, 1989; Han and
Hausman, 1990; Kiefer, 1988; Newman and McCulloch, 1984;
Ridder, 1986). The trade-offs between these sources of possi-
ble misspecification is a fertile research topic not addressed in
our paper.
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mixed with unobserved heterogeneity. Let ¢, be
the absolutely continuous time of a completed
spell, X; be an m-vector of strictly exogenous
and (possibly) time varying covariates, and let
unobserved scalar heterogeneity be ,. Censored
observations are given by 7; = min(¢,,¢.) and by
d; = I(t; <), where ¢, is the censored time of
an incomplete spell and 7 is an indicator func-
tion: d; = 1if t; <t, and d, = 0 otherwise. The
joint density of the mixed distribution is

f(t:,61X;) = (11X, 6,)u(8,). (1)

Assuming independence over s individual spells,
the marginal likelihood of duration times f(¢;]X,)
is

L= nfg(tilli’oi)d“(g)‘

i=1

(2)

The likelihood function (2) is a typical form of
the statistical mixture model. The problem of
how to control for the unobserved mixing distri-
bution u(6#) has been addressed by a number of
authors (Lancaster, 1979; Lancaster and Nickell,
1980; Heckman and Singer, 1982, 1984). Standard
approaches to the estimation of the parameters
of (2) require the specification of a distribution
on 6. However, if the density function u(8) is
specified, then estimation bias due to an incorrect
parameterization of u(#) is not limited to dura-
tion dependence effects, but extends to the struc-
tural parameters of included variables as well.
Moreover, Heckman and Singer (1984) show that
the problem of overparameterization can lead to
the observational equivalence of two different
sets of distributions.

The class of nonparametric estimators which
can avoid the ad hoc specification of the mixing
distribution w(8) in (2) is the nonparametric max-
imum likelihood estimator (Robbins, 1964; Laird,
1978; Lindsay, 1983a,b; Heckman and Singer,
1982, 1984).

Nonparametric characterization of the marginal
density f(z,|X;) takes the form

k

f(elX,) = > g(fit"_Yi’ ej)pj’

J=1

(3)

where Lp, =1, p;=0, j=1,...,k, k is the
number of points of supports, p; is probability
mass point and 6;, j = 1,..., k, is a locator of p,
such that p; = prob(# = 6,). Under random sam-
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pling, the log likelihood for duration times is

Nk
InL =3 In) g(tlX;,6)p,
=1 j=1

(4)

Lindsay (1983a) provides necessary and suffi-
cient conditions for the existence and uniqueness
of solutions to the maximization of (4) based on a
geometric interpretation of the likelihood set.
Some care must be given in estimating the pa-
rameters of the marginal density, e.g., in setting
the range of # over which g(¢,| X, 8,) should have
its support. For the Weibull conditional hazard
model used by Heckman and Singer (1984) and
on which we base our experimental design, this
range is established as follows. The conditional
hazard is hA(t,| X, 8,) = exp(y In t)exp(X;B + 6,).
Let t* = [jis” exp(X;B) ds and exp(8,) = v}¥. The
conditional survival function in terms of ¢* is

S(e¥1X;,6,) = exp(—tFv}), (5)

while the conditional density function of ¢* is

*|X,,0 vfexp(~tfuf), ifd =1

t¥X,,6,) =

f( t = ') Cxp(_t;kvi*)9 if di =0.
(6)

This implies that v} = 1 if the i observation is
censored in which case 6, = 0 and 6,_,, = 0. On
the other hand, for an uncensored observation,
the maximum occurs at dg(¢*|X;,6,)/dv} =0
and

exp( —tfv}) — vFt¥ exp(—t¥v¥) = 0.

(7

By solving (7) we have v = 1/t* where t¥ is
positive and bounded. Thus,

—1n[1/(f0'is7 exp(X,B) ds)

where 6, > 0 if [jis”exp(X;B)ds > 1, 6, <0 if
Jois” exp(X;B)ds < 1. 6, is thus the Cox-Snell
residual. Choosing the largest and smallest value
of v* from the uncensored observations gives
0...x and 8. . As the data become more censored
identification of the tail distribution becomes
more problematic since a relatively small number
of mass points around clustered observations may
not be able to trace out a possibly long-tailed
heterogeneity distribution.

Having established an interval for 8, the EM
algorithm (Dempster et al., 1977) provides a nat-

0, = ’ (8)
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ural method for solving the likelihood equations.
Application to the heterogeneity model is
achieved by treating the sequence of unobserv-
ables {6;} as missing data.> The Heckman-Singer
estimator is consistent for mixing distributions
characterized by a finite number of points of
support. As a practical matter the number of
these must be small enough for their identifica-
tion to be empirically feasible.

III. Maximum Penalized Likelihood

Estimation (MPLE)

Maximum penalized likelihood estimation
(MPLE) was introduced by Good and Gaskins
(1971) and developed by de Montricher, Tapia
and Thompson (1975), and Silverman (1982). They
consider the piecewise smooth estimation of an
unknown density function by adding a term to the
likelihood which penalizes unsmooth estimates.
The general form of a penalized log likelihood
under random sampling is

log L = ¥ log f(x;) — «R{f(x)},

i=1

€

where f(x) is an unknown density, R{f(x)} < «,
R is a functional, and « is the smoothing parame-
ter. The choice of a controls the balance between
smoothness and goodness-of-fit, while the choice
of penalty functional R determines the type of
behavior in the estimated density considered
undesirable.* In this section we consider the ap-
plication of maximum penalized likelihood esti-
mation to the hazard function with a mixing het-

3 Heckman and Singer suggested the steps to find a global
maximum. For the first step, start to maximize with one point
of support (k = 1) with initial value for 8. Let §(m+D
denote the estimated parameter. Divide the interval
[6).,652.] into a representative mass of points of support
(k = 1) and find the points which have the Gateaux derivative
of the log likelihood function, D(6, ;) > 0, for all 8 € @. If
there is no point showing the positive Gateaux derivative, a
global solution has been found. If D(6, u,) > 0, add more
points of support and divide the interval. Proceed to the
subsequent step until there is termination by the criterion
D(6,u) <0, for all § € ©.

For example, if R is defined as the norm of the first
derivative, then a penalty functional R will smooth the slope
of the density f(x) which is semi-discontinuous. If R uses the
norm of the second derivative, the curvature will be smoothed
as well. Therefore, this smooth estimator is an application of
the spline function.
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erogeneity distribution defined in (1)° The
penalty functional in this problem has both a
classical and a Bayesian motivation.

The corresponding optimization problem using
the log penalized likelihood function and a par-
ticular choice of the penalty function R, sug-
gested by de Montricher, et al. (1975)° is

n
log L = Y log f(t,,8)%,) — el f2°,  (10)
i=1

where the penalty function is the square of the
norm of the second derivative with respect to the
observed variables and can vary according to dif-
fering assumptions about the correlation struc-
ture between unobserved heterogeneity and the
observed variables. The norm of the second
derivative weighted by the smoothing param-
eter(s) determines the roughness of the densities
while estimating the best fitting structural rela-
tionship by maximum likelihood. The density of
unobserved heterogeneity u(6,) can be approxi-
mated by the penalty term nonparametrically,
e.g., by splines, if roughness, or lack of smooth-
ness in terms of the metric of the penalty term R,
is due to unobserved heterogeneity. Since the
smoothing parameter(s) is a hyper-prior which
sets the degree of acceptable roughness and thus
the weight of the penalty term in (10), it can be
interpreted as forcing a prior density on hetero-
geneity, giving the maximum penalized likelihood
estimator a Bayesian interpretation.” As a practi-

5 The problems we pursue here are quite different from
previous applications which were limited to univariate model-
ing under the assumption that the functional form for the
density is unknown. For example, Bartoszynski et al. (1981)
applied this method to estimate Cox’s (1982) proportional
hazard function. However, their analysis concerned a
smoothed pointwise estimate of an unknown hazard distribu-
tion which is characterized as a dirac delta function. Other
writers who were concerned with the parametric curve-fitting
problem discussed the possibility that the method could
smooth out the random error component in the linear least
squares regression model (Kimeldorf and Wahba, 1970a,b;
Anselone and Laurent, 1968).

%Good and Gaskins (1971), the first authors who applied
this method, based the penalty function on the first derivative
R(f) = f(f)!/2. Since then, a number of alternative penalty
functions have been introduced by de Montricher et al. (1975)
and Silverman (1982).

A referee has pointed out that the Bayesian interpretation
of the MPLE has much appeal in terms of both the alterna-
tive perspective it brings to the modeling of unobserved
heterogeneity and in terms of its potential to handle mixing
distributions which are not independent of the covariates.
While the importance of this estimator as an alternative to
€.g., Chamberlain’s estimator, may be great, a study of this
issue is left to future research.
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cal matter, the effects of heterogeneity can either
be ignored, in which case the penalty term serves
the purpose of smoothing out the misspecified
density of duration times, or if a mass point
method is used to integrate out the density, the
penalty term can be viewed as a way to smooth
out bumps in the finite support discrete his-
togram used to characterize the marginal density
of heterogeneity. In the Monte Carlo experiments
that follow in section V, we utilize this second
option by combining the Heckman-Singer mass
point estimator for the first term on the right-
hand-side of (10) with the penalty function in-
tended to smooth out bumps in the heterogeneity
distribution. These bumps may be induced by the
discrete nature of the histogram used to charac-
terize the distribution of unobservables and may
become more problematic as censoring rates in-
crease. As mentioned at the end of section 11, a
large percentage of clustered observations makes
it difficult for the finite support histogram to
identify the heterogeneity distribution in finite
samples.

Proofs of the existence of the MPLE when
there is unobserved individual specific and time-
specific heterogeneity are available from the au-
thors on request. Although there has been very
littie work on the asymptotic properties of MPLE,
it is clear that for our Case 1 problem considered
in the Monte Carlo experiments below, MPLE is
consistent as a/Vn — 0 for bounded a, if the
mixing distribution can be characterized by a
finite number of points of support. The reason is
that the NPMLE and the MPLE converge to the
same function for large N since the penalty term
becomes negligible as estimates of unobserved
heterogeneity become smoother.?

IV. The Probability Simulator

Monte Carlo approaches to probability calcula-
tions are well known in the area of computer

¥ For our numerical experiments, we have used the discrete
minimization routine (ZXCGR) in the IMSL library since a
step function approximation was employed in the interval
(X min> Xmax) divided by (m — 1). The time interval was di-
vided by a natural time unit for Case 2 and 3. When the
subjective choice method for the hyper-prior @ was intro-
duced, we increased or decreased « until there was no
significant pattern in {6;} and /or {8,} since if roughness in the
function is not smoothed out, estimates of  will exhibit wide
fluctuations.
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simulation and in econometrics (McFadden, 1989;
Pakes and Pollard, 1989). Simulation methods
have much potential and are gaining wide use in
empirical studies. Early applications were based
on frequency or density simulation (Lerman and
Manski, 1981; Diggle and Gratton, 1984). Recent
uses of simulation estimators to the multinomial
probit can be found in McFadden and Ruud
(1992), Hajivassiliou and Ruud (1993), and
Geweke et al. (1994).

To outline the estimator and the intuition be-
hind it for the duration model with heterogeneity,
suppose that we wish to estimate duration depen-
dence (y) in the absence of covariates. Individual
failure times are recorded by t = (¢, <t, < -
< ty). Divide the time axis into k bins, the [™" of
which contains n, observations. Based on a par-
ticular value of y, say v, the axiomatic data
generating process is used to generate simulated
failure times s = (s, <s, < '- <s)), where
M > N. Let m,, be the number of simulated
observations which fall into the I'" bin. The simu-
lated bin probabilities P, (y,) = m,,/M should
approximate the probability that sample observa-
tions fall in the same bin, P, = n,/N for values of
¥, close to truth. The simulation mechanism used
here is the cumulative distribution function F(t).
A random number u;, i =1,..., N, is drawn
from the uniform distribution and a simulated
time to failure (s,) is generated by inverting F(¢).

This probability simulator has been used in
survival modeling by Atkinson et al. (1988) and
Thompson et al. (1987). They suggest three possi-
ble criterion functions (under the equal binning
scheme) which can be used to minimize distance
between P,/(y,) and P, The first two criteria to
assess the deviation of the simulated probabilities
from the actual probabilities are defined by maxi-
mizing multinomial likelihoods

k
Max S(v0) = X n;1n Py(,)
=1
or
k A
Max S,(vo) = Z In Py,(vo)
=1

depending on the binning scheme. The third cri-
teria is the “Neyman-Modified x2” (Cressie and
Reed, 1988) which is a minimum chi-squared
estimator based on Pearson’s function and re-

687
mains unchanged when, e.g., two cells are com-

bined into a single cell.” Goodness-of-fit over the
k bins is defined as

k (ﬁkz(‘)’o) - PI)2

Si(y0) = ¥ TS (1)
=1 4
and is minimized when ﬁk,()") =P,l=1,...,k,

or when either S, or S, are maximized when the
equal binning scheme we adopt is used.

The previous discussion was based on a data
generating process lacking covariates. Suppose
that for individual i the Poisson parameter k is
now specified as the Weibull hazard in section II.
The problem is to estimate the parameters 6 =
(B, y) by either maximizing §; or S, or minimiz-
ing S;. Due to the presence of heterogeneity, it is
possible that 4 is not monotone in X and ¢ if X
is time-varying. The nonmonotonicity prevents us
from using conventional equal probability binning
methods. The equal binning assumption is essen-
tial to establish the asymptotic properties in the
Thompson et al. (1987) algorithm as well as being
a necessary condition for minimizing (11) without
defining optimization problems for the choice of
bin width and the number of simulated observa-
tions for each bin. It is particularly important in
dampening the variability of (11) with respect to
¥ in the neighborhood of the true y. To address
these points we need a robust variance reAduction
procedure for each bin probability (P, [ =
1,..., k) for incremental changes in estimates of
8. We also require a procedure that avoids empty
bins, since in this case the criterion function in
(11) becomes uninformative if P; = 0.

Solutions to these problems can be illustrated
by considering a two-dimensional duration model
containing a single covariate. Let ¢t = {t,(X)), i =
1,..., N} be failure time data conditional on
exogenous variable X; and let k£, and k, be the
number of bins dividing the time axis and the
covariate axis, respectively. Again let M be
the number of simulated observations and let the
frequency with which simulated durations and
values for the exogenous covariate fall in the
(I, I,)™ bin be m o, h=1....k, I, =
1,..., k,. If a particular 8, is close to truth, then

% We thank an anonymous referee for pointing out the
proper lineage of this criteria.
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the simulated bin probability
A my
P, 1,12( 8) =

2
12
v (12)
should approximate the corresponding portion of
data (time and a covariate) in the same bin,

n[I[2

o (13)

For large M and N, (12) should converge to (13)
as 8, converges to the true 8.

A minor modification in the criterion function
is necessary since the presence of empty bins will
make Pearson’s goodness-of-fit uninformative. To
prevent this, the modified Pearson goodness of fit
becomes

PIIIZ =

. 2
Lok (P1,12(5) - P/,zz)
Py,

if £,,(8), Py, #0
A 2
k2 (P1,12(5) - PI[IZ)
P, (8)
if 13,[,2(5) #0,P, =0

| 0, otherwise.

’

Sm((s) = k|

)y

Li=11,~1

(14)

’

The modified chi-squared criterion substitutes
observed probabilities with simulated probabili-
ties when the observed probabilities for certain
bins are zero. The criterion is minimized when
P, = P1.12(6)7 L=1,...k,l,=1,...k,.

It is well known (c.f. McFadden, 1989) that
discontinuities in the simulated objective function
81, 85, or §; can lead to serious numerical break-
downs in most gradient optimization methods.
We utilize a method introduced by Scott (1979,
1985, 1992) and referred to as the average-shifted
histogram (ASH) method which is well-suited to
smooth our binned frequencies of duration times.
The histogram method minimizes the integrated
mean square error (IMSE) of the bin probabili-
ties. Minimization of the IMSE yields an optimal
bin width, b¥ = 3.55,n /2*9) where i denotes
each axis in the multidimensional (d) space, s, is
the standard deviation, » is the number of obser-
vations. The formal algorithms are outlined in
Scott (1992).!° We use the biweight (quartic) ker-

19 We thank Professor David Scott for making these algo-
rithms available to us.
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nel to weight the bin counts. Other smoothing
techniques for the simulated frequency method,
maximum simulated likelihood method, and sim-
ulated method of moments are discussed in Mc-
Fadden (1989), Stern (1992), Hajivassiliou and
Ruud (1993), and Geweke et al. (1994).

Consistency properties of the simulated proba-
bility estimator as M/N'/? goes to infinity are
discussed in Lee (1992) and McFadden and Ruud
(1992). McFadden (1989) and Pakes and Pollard
(1989) consider alternative simulation estimators
that are moment-based and prove consistency
when the number of simulations is finite while
Brown (1994) examines a class of efficient resid-
ual-based simulation estimators. While the
moment based approaches to estimation by simu-
lation are appealing in that their limiting distribu-
tions do not depend on the number of simula-
tions, construction of the multinomial likelihood
requires that the number of simulations be large
as well, since in this case the simulated probabili-
ties converge to the sample probabilities. Part of
the appeal of the exercise in constructing the
simulated probabilities of duration times is to
assess the practicality and performance of this
particular simulated probability estimator using
supercomputing technologies which allow for the
large number of simulations needed to assure
proper asymptotics.

V. Monte Carlo Resuits
A.  Design of Experiments and Data Generation

Although the asymptotic distribution theory for
the three estimators introduced above has been
addressed in the literature, their finite sample
properties have not been worked out. The bulk of
empirical work which utilizes the duration model
with heterogeneity has used samples of less than
1000, and it is unciear what inferential properties
exist for these alternative estimators in the realis-
tic setting in which asymptotic appeals cannot be
justified. Owing to the highly nonlinear nature of
the duration model with heterogeneity and of the
estimators proposed to estimate such models,
Monte Carlo experience is limited. Thus it would
be informative to examine the finite sample be-
havior of estimators for this class of model. We
carry out a highly capital intensive set of Monte
Carlo experiments to highlight both the computa-
tional feasibility of these alternative estimators
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and to indicate their strengths and shortcomings
using sample sizes that are frequently encoun-
tered in empirical duration modeling. We exam-
ine the feasibility of implementing these alterna-
tives and assess their comparative performance
under different forms of heterogeneity, rates of
censoring, sizes of samples, and parameteriza-
tions of covariates and duration dependence
terms.

We consider the Weibull proportional hazard
model discussed in section II and assume that
X; = (xy;, X)), B = (By, B,) and 6, is unobserved
heterogeneity. Heterogeneity is assumed to be
distributed identically and independently. Artifi-
cial samples (of size n) are generated by first
drawing uniform random variables u; i =
1,..., n, in the interval [0, 1] and then generating
6; according to the implicit function, w, where
6; = 1~ '(u;) and where p "' is the inverse of the
cumulative distribution function. The two exoge-
nous variables X; = (x,;,x,,), i =1,...,n, are
drawn from a standard normal distribution. An-
other uniform random number in the interval
[0, 1} is drawn for the survival function S, =[1-
F(-)l, i=1,...,n and we then solve for the
implied duration ¢,, i = 1,...,n, from the sur-
vival function with given values of parameters, B
and vy. Thus, B

t;=exp|{ln(—=In S;) + In(y + 1)

—(Bixy; + Byxy + 6,)} v+ 1

(15)

Different distributions for §, are used to com-
pare the performances of the different estima-
tors. The standard normal is the unimodal con-
tamination. A mixture of univariate normals and
the multinomial distribution is used for the multi-
modal heterogeneity. Experiments are also con-
ducted on samples with right-censoring rates of
15% and 20%. Samples of 100, 500 and 1000 are
used. These are in the range of sample sizes used
for the bulk of empirical duration studies.'!

n Computing algorithms were developed in Fortran77. In
addition to the computing source codes, STEPIT of Chandler
(1969) is employed as the maximization method for SFM.
STEPIT is useful for the SFM procedure because when the
steps oscillate it detects the fashion of zigzags and shortcuts
the optimizations. The minimization routine ZXCGR in the
IMSL library was used for MPLE. We also use the computer
code of CTM documented by Yi et al. (1987) for Heckman
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The method employed to choose the smoothing
parameter a of MPLE is the subjective choice
method (Bartoszynski et al., 1981). We attempted
cross-validation but it became too computation-
ally burdensome even for data sets of size 100.
Searching for a maximum requires no less than
the number of function evaluations times the
number of observations times the number of
function evaluations with new a. In a typical case,
about 14700 iterations were needed for data sets
of size 100. The adaptation of cross-validation
methods to our model merits further investiga-
tion.

The simulated frequency method (SFM) simu-
lation algorithm can be adapted easily for more
complicated models. We set the number of simu-
lated failure times at N = 10,000, 50,000, 100,000
for sample sizes n = 100, 500, 1000. The number
of simulated data sets (M) for constructing the
bootstrap standard deviations is set at 30.

B.  Comparisons among Different Estimators

Typical outcomes of our Monte Carlo experi-
ments based on 100 replications are shown in
tables 1~3.'> These results are suggestive of some
discrepancies among the different estimators in
different cases but also suggest substantial com-
parability between them when the underlying
stochastic process is not too complicated and has
been correctly modeled. Moreover, they point to
the relatively good performance of all three esti-
mators when sample sizes of 1000 are available.
Table 1 presents results based on the three esti-
mators as we vary sample size and the censoring
rates. Heterogeneity is drawn from a standard-
ized normal distribution. Experiments with
NPMLE were begun using 2 points of support to
identify the heterogeneity distribution. Since the
standard normal distribution has a mass point at
0.0, one point of support locates at —3.0 with
cumulative probability 0.0 and the other point is
set to locate at 0.0 with the expected cumulative
probability 0.5. Adding two more points of sup-

and Singer’'s NPMLE, which is based on the EM algorithm of
Dempster, et al. (1977). Approximate run time for the SPE
was 65 c.p.u. minutes on an ES9000 using 1000 observa-
tions, while the NPMLE was 15 and the MPLE was approxi-
mately 25.

12 Additional experimental results are available from the
authors on request.

. All Rights Reseved.
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TaBLE 1.—COMPARISON OF ESTIMATORs WITH DIFFERENT CENSORING RATES AND STANDARD NORMAL HETEROGENEITY

(true parameters are y = B; = 8, = 1.0)

No Censoring 15% Right-Censored 20% Right-Censored

NPMLE MPLE SPE NPMLE MPLE SPE NPMLE MPLE SPE

¥ 0.749 0.661 0.756 0.622 0.632 0.803 0.621 0.612 0.770

(0.011) (0.017) (0.012) (0.018) (0.018) (0.008) (0.013) (0.019) (0.031)

n =100 él 0.799 0.781 1.182 0.689 0.766 0.819 0.686 0.762 0.869
(0.012) (0.015) (0.010) (0.013) (0.017) (0.010) (0.015) (0.016) (0.008)

[32 0.760 0.721 0.852 0.667 0.707 0.867 0.661 0.699 0.856

(0.007) (0.009) (0.012) (0.011) (0.010) (0.007) (0.016) (0.016) (0.009)

¥ 0.970 0.933 1.017 0.904 0.901 1.091 0.844 0.836 1.155
(0.004) (0.005) (0.005) (0.007) (0.012) (0.008) (0.007) (0.013) (0.008)

n = 500 él 0.973 0.983 1.058 0.812 0.913 1.021 0.732 0.856 1.092
(0.007) (0.010) (0.010) (0.007) (0.011) (0.010) (0.007) (0.012) (0.004)

[} 2 0.960 0.950 1.082 0.851 0.902 0.985 0.722 0.859 1.085
(0.009) (0.009) (0.011) (0.012) (0.015) (0.007) (0.013) (0.017) (0.006)

¥ 1.054 0.936 0.991 0.916 0.921 0.989 0.887 0.865 0.931
(0.004) (0.006) (0.004) (0.003) (0.005) (0.003) (0.005) (0.006) (0.003)

n = 1000 BAl 0.975 0.961 1.011 0.799 0.927 1.023 0.769 0.907 1.118
(0.008) (0.008) (0.009) (0.004) (0.009) (0.005) (0.005) (0.008) (0.004)

ﬁz 0.970 0.969 0.987 0.815 0.933 1.011 0.809 0.913 1.027
(0.004) (0.005) (0.004) (0.005) (0.007) (0.007) (0.007) (0.008) (0.005)

Note: Average standard errors are in parentheses below estimates averaged over the 100 replications for each experiment.

TABLE 2.—COMPARISON OF ESTIMATORS USING UNCENSORED Data
AND Non-UNiMopAL HETEROGENEITY DISTRIBUTIONS
(true parameters are y = B, = B, = 1.0)

Bimodal Heterogeneity? Multimodal Heterogeneity”
Estimate NPMLE MPLE NPMLE MPLE
¥ 0.788 0.757 0.828 0.812
(0.007) (0.009) (0.005) (0.007)
n =100 [;l 0.854 0.843 0.847 0.839
(0.007) 0.011) (0.009) (0.012)
B, 0.853 0.838 0.836 0.842
(0.006) (0.007) (0.008) (0.011D)
% 0.953 0.922 0.985 0.992
(0.002) (0.003) 0.002) (0.002)
n = 500 B, 0.929 0.921 0.985 0.980
(0.005) (0.005) (0.003) (0.003)
B> 0.921 0.921 0.969 0.964
(0.004) (0.006) (0.002) (0.003)
¥ 0.954 0.954 0.986 0.994
(0.003) (0.004) (0.002) (0.024)
n = 1000 B, 0.975 0.970 0.988 0.985
(0.002) (0.004) (0.002) (0.002)
B, 0.977 0.975 0.972 0.971
(0.003) (0.006) (0.002) (0.002)
Note: Average standard errors are in parentheses below estimates averaged over the 100 replications for each
experiment.
4 qu(0) = pQuad) ™/ expl—02/207) + (1 — pX2mwod) V2 expl - 0% /203}d6 with p = 0.5 and g =0} =
1.0.
YA =p,i=1,..., 7.with py =p3 =ps=p7 =01 py=py =Py = 0.2
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TaBLE 3.—CoMPARISON OF ESTIMATORS UsiNG UNCENSORED DATA AND ALTERNATIVE
PARAMETERIZATIONS OF THE DURATION MODEL
(standard normal heterogeneity)

Y=28=8,=1

Y=3B=1pB,=2

Sample Parameter
Size Estimate NPMLE MPLE NPMLE MPLE
$ 1.558 1.412 2.502 2213
0.014) 0.013) (0.015) (0.028)
n =100 8, 0.810 0.783 0.734 0.728
(0.010) 0.012) 0.011) (0.018)
B, 0.801 0.771 1.635 1.576
0.012) (0.013) (0.010) (0.021)
3 1.940 1.872 2.976 2.774
(0.002) (0.005) (0.004) (0.005)
n =500 B, 0.967 0.955 0.991 0.973
(0.002) (0.004) (0.003) (0.002)
8, 0.975 0.948 1.928 1.829
(0.003) (0.006) (0.003) (0.006)
3 1.953 1.883 2.987 2.778
(0.002) (0.003) (0.001) (0.004)
n = 1000 B 0.971 0.962 0.992 0.982
(0.002) (0.003) (0.001) (0.025)
B, 0.976 0.956 1.935 1.838
(0.003) (0.002) 0.002) (0.006)

Note: Average standard errors are in parentheses below estimates averaged over the 100 replications for each

experiment.

port reduced bias in parameter estimates sub-
stantially [(6, u(9)) = {(.012, 276), (232, .343),
(1.22,.760)}]. We adopted the strategy of giving
an additional point of support to the heterogene-
ity distribution until no directional directives show
positive values and no improvement in the likeli-
hood value is shown (Heckman and Singer, 1984).
The simulated probability estimator (SPE) is
based on stochastic axioms which are consistent
with the data generating process, absent parame-
ter values for the duration model. Samples of size
of 1000, 500, and 100 require seven, six, and four
bins for each dimension, respectively. For MPLE,
the squared norm of the second derivative of the
hazard function with respect to X, [lA(X)I?
was used as the penalty function.> We used
ten bins to calculate derivatives in the interval
[’_Ymin’ ’_Ymax ]

For the selection of population parameters
considered in table 1 (y = B8, = B8, = 1), average
point estimates display a pervasive pattern of

B Details concerning the theoretical motivation for using
the second derivative with respect to X can be found in an
original appendix to this paper which no longer accompanies
it. Interested readers can write the authors for the discussion.

downward bias for both NPMLE and for MPLE,
although the two estimators and their standard
errors are quite comparable. This downward bias
in the duration dependence term is expected
when heterogeneity is ignored and the data ex-
hibit positive duration dependence, but the source
of the downward bias in the covariate effects as
well is unclear. What is clear is that the bias is
substantially removed when uncensored samples
of 1000 are considered. Both the MPLE and
the NPMLE show over a five-fold reduction in
bias in moving from samples of 100 to samples
of 1000 with samples of 1000 indicating a bias
ranging between —6.4% (y, MPLE) and 5.4%
(v, NPMLE). Standard errors for NPMLE, MPLE
and SPE are also quite comparable. Results for
the SPE are quite encouraging. Even at censoring
rates of 20%, the simulated probability estimator
tracks the underlying data generating process
quite well, often offering a ten-fold bias reduction
vis-a-vis NPMLE and MPLE. The relative perfor-
mance of the simulated probability estimator
when the underlying data generating process was
correctly specified did not appear to suffer as we
modified the parameterization and the form of
heterogeneity. With censoring rates of 15%

Copvright © 2001. All Rights Reseved.
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NPMLE and MPLE continue to underestimate
the true parameter values. However, the degree
of underestimation for the structural parameters
is greater with NPMLE than MPLE. MPLE ben-
efits substantially from smoothing by the penalty
term as censoring increases the number of obser-
vations in the tails of the distribution, making it
more difficult for the discrete histogram used in
NPMLE to identify and estimate the underlying
mixture.

The next set of resuits in table 2 considers the
comparative performance of NPMLE and MPLE
and the robustness of the probability simulator
which ignores a multimodal contaminating mix-
ture. We consider two rather benign forms of
modality. The first is one in which heterogeneity
is a mixture of independent standardized normal
variates and the second is one in which hetero-
geneity is discrete, taking on seven values with
three modes (see footnote 4 in table 2). MPLE
and NPMLE performed well when actual hetero-
geneity is not unimodal. However, NPMLE has
mass points at (.274,.783,.823) for the bimodal
distribution and showed all directional derivatives
to be negative. For the multimodal distribution, 4
points of support appeared adequate. These re-
sults, as well as those with the unimodal distribu-
tion, are consistent with a common finding that
the mass point method employed by NPMLE has
difficulty reflecting the true distribution of het-
erogeneity and that the choice of optimal sup-
porting points remains an empirical problem re-
quiring further research. These results are broadly
consistent with the findings of table 1 in that, for
most experiments, NPMLE has the smaller bias
and smaller standard errors than MPLE when no
censoring occurs, regardless of the modality of
the underlying heterogeneity. Moreover, the
downward bias in the duration dependence term
is essentially removed by NPMLE and MPLE for
samples of 1000 when heterogeneity is discrete
with a small number of points of support (7). This
is to be expected since that is just the representa-
tion of heterogeneity used by MPLE and NPMLE.

Table 3 provides comparisons of the NPMLE
and MPLE when several alternative parameteri-
zations of the duration model are used as well as
the robustness of the probability simulator under
these alternative parameterizations when hetero-
geneity is ignored. A similar pattern of downward
bias in the duration parameter and covariates is

Caopvriaht ©.2001 _AlLPRi
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found as well as an overall marginal preference of
the NPMLE over MPLE when no censoring ex-
ists. These same experiments were repeated as
many as 100 times using different seed values.
The Monte Carlo results are quite stable and
support the outcomes of typical experiments
shown in tables 1-3.

VI. Conclusions

This paper has outlined and studied several
methods well-suited to measure mixture distribu-
tions. Until the work of Heckman and Singer
(1984), few in the field of econometrics had paid
attention to semi-nonparametric estimation
methods for the identification of mixed unobserv-
ables. We have proposed two additional estima-
tors which also address the existence of an unob-
served mixing distribution in the sample density.
Maximum penalized likelihood estimation
smooths out roughness while maximizing good-
ness of fit. We have provided proofs of the exis-
tence and uniqueness of this estimator for the
duration model with general forms of unobserved
heterogeneity. The simulated probability estima-
tor is based on axioms which detail the data
generating process. Our Monte Carlo results sug-
gest that the nonparametric maximum likelihood
estimator has some disadvantages in terms of
finite sample behavior relative to the maximum
penalized likelihood estimator when censoring ex-
ists but that the two estimators often are quite
comparable. The simulated probability estimator
performs quite well and provides relatively robust
estimates in samples of 100 to 500 even when the
data generating process is misspecified to ignore
the heterogeneity present in the data. Finally,
although the maximum penalized likelihood esti-
mator performs well in most cases, the choice of
smoothing parameters is an open question when
alternative norms are used for the penalty func-
tion.
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