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Abstract

Economic theory provides the econometrician with substantial structure and re-

strictions necessary to give economic interpretation to empirical findings. In many

settings, such as those in consumer demand and production studies, these restric-

tions often take the form of monotonicity and curvature constraints. Although such

restrictions may be imposed in certain parametric empirical settings in a relatively

straightforward fashion by utilizing parametric restrictions or particular parametric

functional forms (Cobb-Douglas, CES, etc.), imposing such restrictions in semipara-

metric models is often problematic. Our paper provides one solution to this problem

by incorporating penalized splines, where curvature constraints are maintained via in-

tegral transformations of spline basis expansions. We derive the estimator, algorithms

for its solution, and its large sample properties. Inferential procedures are discussed as

well as methods for selecting the smoothing parameter. We also consider multiple re-

gressions under the framework of additive models. We conduct a series of Monte Carlo

simulations to illustrate the finite sample properties of the estimator. We apply the

proposed methods to estimate two canonical relationships, one in consumer behavior

and one in producer behavior. These two empirical settings examine the relationship

between individuals’ degree of optimism and risk tolerance and a production function

with multiple inputs.
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1 Introduction

Economic theories can provide useful guidance on the modeling of real world data. Utility

functions associated with rational preference are monotone; under convex preferences utility

function a quasiconcave. Demand functions of normal goods are downward sloping (Matzkin,

1991; Lewbel, 2010; Blundell et al., 2012). According to duality theory, profit functions are

concave in output price and cost functions are monotonically increasing and concave in input

price. Convex function estimation is also used extensively in derivative asset pricing models

(Broadie et al, 2000; Aı̈tSahalia and Duarte, 2003; Yatchew and Härdle, 2006). Researchers,

when trying to model economic relationships, often face at least two challenges. One is

fidelity to economic theory. Another is flexibility in functional forms (Guilkey, Lovell,

and Sickles, 1983, Diewert and Wales, 1987). In addition, these two goals are often at

odds: conformity to theories often dictates relatively rigid functional forms, while flexible

parameterizations sometimes lead to implausible predictions.

One fruitful approach to tackle this dilemma is to use nonparametric or semiparametric

methods subject to the restrictions suggested by economic theory. This is a well-developed

literature and has had a number of contributors. Matzkin (1994) and Yatchew (2003, Chapter

6) provide general reviews of this literature. For recent developments, see Hall and Huang

(2001), Groeneboom et al. (2001), Mammen and Horowitz (2004), Carroll et al. (2011),

Shively et al. (2011), and Blundell et al. (2012), among others. We follow in this line of

research and present a flexible semiparametric estimator with shape constraints. We focus on

functional relationships with two shape constraints: monotonicity and concavity (convexity)

as this is the class of functions encountered most frequently in economic studies. Functional

relationships with either one of these two constraints are special cases of our estimator.

We base our work on Ramsay’s (1998) monotone smooth estimator and utilize integral

transformations defined by a certain set of differential equations to impose shape restric-

tions. A key advantage of this transformation approach is that it transforms a constrained

problem into an unconstrained one. We subsequently model the unconstrained problem us-

ing penalized spline methods, resulting in a nonlinear semiparametric estimator. We show

that careful choice of transformation and of the model-based penalty can simplify estimation

considerably.
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We propose an iterative algorithm to calculate the proposed estimator. We establish the

consistency of the estimator and present approximate methods for inference and for selecting

the smoothing parameter. We then extend our estimator to an additive model. We illustrate

the finite sample performance and usefulness of our methods with Monte Carlo simulations

and two empirical applications.

The remainder of the paper is organized as follows. Section 2 briefly reviews the rel-

evant literature and then presents our transformation-based model to accommodate shape

restrictions. Section 3 proposes a Gauss-Jordan algorithm to solve the estimator. Sections

4 and 5 discuss methods of inferences and model specification. Section 6 extends the model

to multiple regressions. Sections 7 and 8 report Monte Carlo simulations and two empirical

examples. The last section concludes. A technical appendix gathers all proofs.

2 Model and Estimator

Several approaches have been used to impose restrictions in statistical estimations. A simple

approach is the transformation of variables. For instance, the logarithmic transformation is

commonly used to assure positiveness of predicted outcomes and the Box-Cox transformation

can offer an even more flexible alternative. In the estimation of production functions, the

Cobb-Douglas, constant elasticity of substitution (CES), translog, and generalized Leontief

specifications are commonly employed. These functional forms are often chosen because

they satisfy certain theoretical properties and also out of their simplicity, as they are either

linear in parameters after a simple log transformation or are linear to begin with. Simple

parametric forms, however, can sometimes entail nontrivial restrictions. For example, a

logarithm transformation of the dependent variable implies multiplicative errors rather than

the usual additive ones.

To avoid rigid functional forms, semiparametric and nonparametric methods have been

used to accommodate shape restrictions. An early example is Brunk’s (1955) isotonic es-

timator, which essentially produces a monotone step function. Mukerjee (1988) and Mam-

men (1991) developed kernel-based isotonic regression techniques which consist of a kernel

smoothing step and an isotonization step to maintain monotonicity. Instead of isotonization,

Hall and Huang (2001) suggested a penalized kernel method to obtain monotonicity. Their
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method is employed by Henderson et al. (2012), Blundell et al. (2012), Ma and Racine

(2013) and Du et al. (forthcoming) for various applications or further generalizations. An-

other popular family of smoothers, the spline-based methods, has also been used by Ramsay

(1988), Kelly and Rice (1990), and Mammen and Thomas-Agnam (1999) who proposed

monotone estimators based on shape preserving spline basis functions. A third possibility

is to use the technique of rearrangement or data sharpening (cf. Braun and Hall (2001)

and Chernozhukov, et al. (2009)). Shively et al. (2009) consider a Bayesian approach of

nonparametric monotone function estimation of Gaussian regressions, which is generalized

to log-concave likelihood functions by Shively et al. (2011).

Our estimator is inspired by the smooth monotone estimator of Ramsay (1998). Suppose

y = f(x) is a smooth monotone function of x. For simplicity, we assume that x ∈ [0, 1].

Ramsay (1998) proposed to model an unknown monotone function via the following integral

transformation:

f(x) =

∫ x

0

exp(r(s))ds, (1)

where r is a square integrable function on [0, 1]. Since f ′(x) = exp(r(x)) > 0 for all x,

the monotone restriction is satisfied. Unlike some penalty-based monotone estimators that

impose observation-specific monotonicity, (1) is globally monotone thanks to the positive

exponential functional embedded in the integral transformation.

Since f ′′(x) = f ′(x)r′(x) and f ′(x) > 0, f(x) is concave if r′(x) < 0 for all x. Our

strategy is to use an additional integration transformation (1) to impose the condition that

r′(x) < 0. In particular, we consider the following parameterization

f(x) =

∫ x

0

exp(−
∫ s

0

g(t)dt)ds. (2)

It follows that f ′(x) = exp(−
∫ x
0
g(t)dt) > 0 and f ′′(x) = −f ′(x)g(x), implying that f ′′(·) < 0

if g(·) > 0. Thus under (2), the monotonicity and concavity constraints are reduced to a

simple positiveness constraint that g(x) > 0 for all x. Natural candidates of g include

g(x) = x2 and g(x) = exp(x); other choices are certainly possible. Below we will show that

g(x) = x2 is particularly appealing for the proposed method on theoretical and practical

grounds.
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The parameterization (2) can be characterized by the following differential equation

g(x) = −f
′′(x)

f ′(x)
.1

The solution is given by

f(x) = β0 + β1

∫ x

0

exp(−
∫ s

0

g(t)dt)ds,

where β0 and β1 are generic constants.

Given an iid random sample {Yi, Xi}ni=1 with Xi ∈ [0, 1], we can consider the following

statistical model for a monotone and concave functional relationship

Yi = f(Xi) + ei = β0 + β1

∫ Xi

0

exp(−
∫ s

0

g(t)dt)ds+ ei, (3)

where g(·) > 0 and ei are iid error terms with mean zero and a finite variance σ2. We

will model g(·) by g ◦ h(·), where h is a square integrable function defined on [0, 1] free of

constraints.

One major advantage of the transformation-based approach to incorporate constraints

is that we can transform a constrained problem into an unconstrained one. In our case,

this reduces to the modeling of h. Lacking theoretical guidance or a priori information on

h, we opt to model h using a flexible nonparametric estimator. Specifically, we use the

spline method, in which it is relatively straightforward to embed smoothers for nonlinear

functionals or to implement additive structures in multiple regressions using splines. Since

the spline is a piecewise polynomial that is smoothly connected at its joints (knots), then

because of their local nature splines do not suffer from the oscillations associated with global

polynomials such as the power series.

There exist many types of splines, such as the truncated power series, B-splines, radial

splines, periodic splines and thin-plate splines (cf. de Boor (2001) for a general treatment of

splines). Let 0 < k1 < · · · < kM < 1 be a series of knots of the spline basis functions. The

1The quantity g reflects the relative curvature of f . Interestingly, we note that this is also the parame-
terization used to derive Arrow-Pratt utility.
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popular truncated power series splines are given by

Φ(x) = (1, x, . . . , xp, (x− k1)p+, · · · , (x− kM)p+)T ,

where (x)+ = max(x, 0), and p is a positive integer. Define h(x) = cTΦ(x) with c being a

vector of coefficients with compatible dimension. This construction, a linear combination

of spline basis functions, is a flexible tool of curve fitting. The degree of smoothness of

spline approximation is controlled by p: a linear combination of spline basis functions of

degree p is a pth degree polynomial on each subinterval [km, km+1] and has p− 1 continuous

derivatives on its entire domain. The global polynomials control the overall shape of a curve,

while the spline basis functions reflect local features. For flexibility and numerical stability,

a common practice in spline approximation is to employ a large number of low order spline

basis functions (i.e., large M , small p).

In practice, truncated power series are often transformed to B-splines, which are the max-

imally differentiable interpolative basis functions. The B-splines are generalizations of Bézier

curve and can be constructed recursively (cf. Eilers and Marx (1996)). B-splines sometimes

facilitate theoretical analysis and usually produce better finite sample performance.

Let P = 1 + p+M and Φ be a P -dimensional basis functions. We consider the following

model

Yi = f(Xi; β, c) + ei = β0 + β1

∫ Xi

0

exp

(
−
∫ s

0

g(cTΦ(t))dt

)
ds+ ei. (4)

The intercept β0 and a slope-type parameter β1 are required for identification as the pa-

rameterization of f does not allow for free location and scale parameters. To see this,

consider the simplest case g(x) = a, where a is a non-zero constant. It follows that

f(x) = (1− exp(−ax))/a, whose location and scale can not independently vary.

Model (4) is a semiparametric model with two parametric coefficients and a nonparamet-

ric smoother g. To balance fidelity to the data and smoothness of the estimator, we adopt

the approach of penalized spline estimation.2 This method uses a relatively generous spline

basis and shrinks all coefficients towards zero to avoid overfitting. We choose this approach

because the delicate balance between goodness-of-fit and smoothness is governed by a single

2Kneip, Sickles, and Soing (2012) used such penalized splines in their general treatment of nonparametric
time varying and cross-sectionally heterogeneous panel estimator.
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smoothing parameter and therefore easier to implement.3

To implement this estimator for model (4) we use penalized least squares, minimizing

the sum of squared residuals plus a penalty on the roughness of f . The objective function

is given by

Qλ(β, c) =
1

n

n∑
i=1

(Yi − f(Xi; β, c))
2 + λD(f), (5)

where D(f) > 0 reflects the roughness of f . For the pth degree splines, a popular choice of

the penalty is the integrated squared qth derivative of f , q ≤ p. For example, the integrated

quadratic penalty with q = 2 is commonly used, which leads to the natural cubic splines in

smoothing splines.

In penalized spline estimations, we can in principle select the basis functions and the

penalty separately. Nonetheless, for nonlinear models, careful choice of penalty with respect

to the form of f can sometimes improve the estimation considerably. For instance, Heckman

and Ramsay (2000) showed that proper model-based penalties can reduce the number of

spline basis functions and the approximation bias at the same time, resulting in smaller

mean square errors. In our case a natural choice of the penalty is the integrated relative

curvature; that is, D(f) = −
∫ 1

0
f ′′(x)/f ′(x)dx =

∫ 1

0
g(x)dx. Since g(x) > 0 by construction,

it consists a valid roughness penalty. This penalty on the relative curvature penalizes not

only the curvature of f but also small values of f ′. Consequently, it prevents the ‘boundary’

solutions where f ′(x) = 0.

3 Estimation Algorithm

Denote the solution to the proposed nonlinear estimation (5) by β̂ = (β̂0, β̂1)
T and ĉ. Let

m(x; c) =
∫ x
0

exp(−
∫ s
0
g(cTΦ(t))dt)ds. It follows that D(f) = D(m). Define m̂(Xi) =

m(Xi; ĉ) and g′(x) = dg(x)/dx. Replacing β with β̂ and applying Taylor expansion to m in

3An alternative to the penalized spline method is the regression splines method, which balances the
goodness-of-fit and smoothness trade-off through judicious selection of spline basis functions. The selection
of basis functions for regression splines can be a daunting task, especially in multiple regressions. Consider
a candidate set of P basis functions. A complete subset selection, which exhausts all possible combinations
of the basis functions, entails 2P evaluations of candidate models.
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(5) with respect to c around ĉ yields

1

n

n∑
i=1

(
Yi − β̂0 − β̂1m(Xi; ĉ)− β̂1Ẑi(c− ĉ)

)2
+ λD, (6)

where

Ẑi =
∂m̂(Xi; ĉ)

∂c
= −

∫ Xi

0

{∫ s

0

(Φ(t)g′(ĉTΦ(t))dt) exp(

∫ s

0

−g(ĉTΦ(t))dt)

}
ds.

The first order condition of (6) with respect to c is given by

− 1

n

n∑
i=1

β̂1Ẑ
T
i (Yi − β̂0 − β̂1m̂(Xi)− β̂1Ẑi(c− ĉ)) + λD′ = 0, (7)

where

D′ =
∂D

∂c
=

∫ 1

0

Φ(x)g′(cTΦ(x))dx.

Next denote D̂ = D(m̂) and D̂′ and D̂′′ its first and second derivatives with respect to c

evaluated at ĉ. Taking a Taylor expansion of D′ with respect to c around ĉ yields

− 1

n

n∑
i=1

β̂1Ẑ
T
i (Yi − β̂0 − β̂1m̂(Xi)− β̂1Ẑi(c− ĉ)) + λD̂′ + λD̂′′(c− ĉ) ≈ 0. (8)

Define êi = Yi − β̂0 − β̂1m̂(Xi). Substituting êi into (7) and rearranging terms yield

(
1

n

n∑
i=1

β̂2
1Ẑ

T
i Ẑi + λD̂′′)(c− ĉ) ≈ 1

n

n∑
i=1

β̂1Ẑ
T
1 êi − λD̂′. (9)

Expression (9) suggests a Gauss-Jordan iterative algorithm to solve for the proposed

estimator. Let ĉ− be the current estimate of c and m̂(Xi), Ẑi, D̂
′, D̂′′ and êi be evaluated at

c = ĉ−. Denote Y = (Y1, . . . , Yn)T and m̂ = (m̂(X1), . . . , m̂(Xn))T . Taking m̂ as given, we

calculate β̂ via the ordinary least squares by regressing Y on m̂ and a constant one. Next

holding β̂ constant, we update c according to the following formula:

ĉ = ĉ− +

{
1

n
β̂2
1Ẑ

T Ẑ + λD̂′′
}−1{

1

n
β̂1Ẑ

T ê− λD̂′
}
, (10)
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where ê = (ê1, . . . , ên)T and Ẑ =
(
ẐT

1 , . . . , Ẑ
T
n

)T
. β̂ and ĉ are updated alternatively in this

fashion until convergence.

Remark 1. The penalty D(m̂) and their derivatives D̂′ and D̂′′ generally depend on the

current estimate ĉ− and therefore need to be recalculated at each stage of the updating. This

updating process is simplified when g(x) = 1
2
x2. Recall that h(x) = cTΦ(x). Define K =∫ 1

0
Φ(x)ΦT (x)dx. It follows that D(m) = 1

2
cTKc and the updating formula (8) simplifies to

ĉ = ĉ− +

{
1

n
β̂2
1Ẑ

T Ẑ + λK

}−1{
1

n
β̂1Ẑ

T ê− λKĉ−
}
.

Thus with a quadratic g, the penalty weight matrix remains a constant that does not depend

on unknown parameters. Moreover, the Taylor expansion given by (8) is exact.

Remark 2. The convergence of the estimation is usually quite speedy. To assure that each

step improves the penalized objective function, we also implement a step-halving procedure.

Whenever an updating step in c fails to improve the objective function (6), we divide it by

two to mitigate overshooting. This adjustment further improves the numerical stability of

the proposed algorithm.

4 Large Sample Properties and Inferences

Despite the popularity of penalized spline methods, their theoretical properties are less well

understood. Early results were provided in Wand (1999), Aerts et al. (2002) and Yu and

Ruppert (2002) under the framework that the dimension of the spline basis is sufficiently

large and fixed. Hall and Opsomer (2005) investigated the problem using a white noise rep-

resentation. Claeskens et al. (2008) showed that if the number of knots increases as sample

size increases, then the asymptotic properties of penalized splines share many characteristics

of the asymptotic distributions of regression splines and smoothing splines.4 Kauermann

et al. (2009) studied the asymptotic properties of penalized splines for generalized linear

4Smoothing splines are a special case of penalized splines when the number of basis functions equals the
number of unique observations. For a general treatment of smoothing splines, cf. Wahba (1990) .
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models under the regression splines scenario. Li and Ruppert (2008) also used the device of

equivalent kernels to study smoothing splines.

Following Wand (1999), Aerts et al. (2002) and Yu and Ruppert (2002), we study the

asymptotic behavior of the proposed methods under the premise that the fixed number

of spline basis functions is sufficiently large that the approximation error is o(1). As in

nonparametric modeling, the model is flexible enough to adapt to regression functions of

unknown form; at the same time as in parametric modeling, the number of parameter is

fixed, and the parameters can be estimated at
√
n rates. This type of fixed-knot asymptotics

converge to a known normal distribution and thus provide standard inferential benchmarks.

To facilitate the derivation, we first present an alternative representation of solution (10).

Given current estimates β̂ and ĉ−, define the ‘pseudo regressand’ Ỹi = Yi − β̂0 − β̂1m̂(Xi) +

β̂1Ẑiĉ−. Plugging Ỹi into (7) and rearranging terms yield

(
1

n
β̂2
1Ẑ

T Ẑ + λD̂′′)ĉ ≈ 1

n
β̂1Ẑ

T Ỹ + λ(D̂′ − D̂′′ĉ−),

where Ỹ = (Ỹ1, . . . , Ỹn)T . Holding β̂ constant, we can update c using the following alternative

formula:

ĉ = (
1

n
β̂2
1Ẑ

T Ẑ + λD̂′′)−1
(

1

n
β̂1Ẑ

T Ỹ + λ(D̂′ − D̂′′ĉ−)

)
. (11)

Remark 3. When g = 1
2
x2, we have D(m) = 1

2
cTKc and D′ − D′′c = 0, resulting in a

simpler updating process

ĉ = (
1

n
β̂2
1Ẑ

T Ẑ + λK)−1
(

1

n
β̂1Ẑ

T Ỹ

)
.

Since β̂, Ẑ and Ỹ all depend on the current estimate ĉ−, iterations are still called for.

Remark 4. We present the alternative representation (11) to facilitate the asymptotic anal-

ysis. Our numerical experiments indicate that the Gauss-Jordan algorithm given in the

previous section is usually more robust and converges faster, especially when a non-qudratic

g is used. We recommend the Gauss-Jordan algorithm for the calculation of our estimator.

This representation (11) of c as a linear function of Ỹ allows us to use known results on

linear smoothers for inferences. Denote θ(λ) = (β(λ), c(λ)). We emphasize the dependence
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of the estimator on the smoothing parameter in this section as the asymptotics depend on

whether λ is fixed or goes to zero asymptotically. In particular, we shall denote by λ a fixed

smoothing parameter and by λn one dependent on the sample size.

We need the following assumptions to obtain consistency.

Assumption 1. {Xi, Yi} are iid random samples such that

Yi = f(Xi; θ) + ei = β0 + β1

∫ Xi

0

exp

(
−
∫ s

0

g(cTΦ(t))dt

)
ds+ ei, (12)

where ei’s are iid random errors with mean zero and finite variance σ2 > 0.

Assumption 2. For all x, the conditional mean function f(x; θ) is continuous in θ ∈ Θ,

which is compact.

Assumption 3. (a) 1
n

∑n
i=1{f(xi; θ

∗) − f(xi; θ)}2 converges to some limit function uni-

formly in θ∗, θ ∈ Θ; (b)

Q(θ) = lim
θ

1

n

n∑
i=1

(f(Xi; θ)− f(Xi; θ
0))2.

has a unique minimum at θ = θ0 ∈ Θ.

Theorem 1. Under assumptions 1-3, if the smooth parameter λn = o(1), then a sequence

of penalized least estimators minimizing the objective function (5) exists and θ̂(λn)
p→ θ0 as

n→∞.

Remark 5. The variance of θ̂(λn) goes to 0 as n tends to ∞ whether or not λn tends to

0. However, if λn → 0 as n → ∞, then the bias also tends to 0 and consistency can be

established.

Next we derive the asymptotic normality. We first derive the asymptotics with λ fixed.

This is needed for finite sample inference. Let W (λ) be a n × 2 matrix with the ith row

Wi = (1,m(Xi; c(λ))), i = 1, . . . , n. Define

PW (λ) = W (λ)(W (λ)TW (λ))−1W (λ)T ,

PZ(λ) = (β1(λ)Z(λ))(β2
1(λ)Z(λ)TZ(λ) + nλD′′)−1(β1(λ)ZT (λ)), (13)
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and Ŵ (λ), P̂W (λ) and P̂Z(λ) their sample analogs evaluated at θ̂(λ), the penalized least

squares estimators.

Under the assumption of iid errors, the variance σ2 is estimated by the sum of squared

residuals divided by proper degrees of freedom. Our semiparametric estimator has two

parametric parameters β0 and β1, and a nonparametric smoother m(X; c). The degrees of

freedom of the smoother, which can be viewed as its equivalent number of coefficients to

that of a power series approximation, are calculated as tr(P̂Z(λ)). Therefore we estimate σ2

with

s2 =

∑n
i=1 ê

2
i

n− tr(P̂Z(λ))− 2
.

Remark 6. Alternatively, we can use the degrees of freedom of the residuals in the cal-

culation of variance. For linear smoothers, the residual degrees of freedom are given by

2tr(P̂Z(λ)) − tr(P̂ 2
Z(λ)), cf. Ruppert et al. (2003) and references therein. In practice, these

two specifications often give similar results.

We make the following assumptions for asymptotic normality.

Assumption 4. The following penalized objective function

Qλ(θ) = Q(θ) + λD(f(θ))

has a unique minimum at θ(λ) in the interior of Θ, where λ is positive and finite.

Assumption 5. The conditional mean function f(·; θ) is twice continuously differentiable

in a neighborhood of θ(λ), and PW (λ) and PZ(λ) converge uniformly in θ in a neighborhood

of θ(λ).

Below we present an asymptotic normality result of the estimator. We choose to report

results for the predicted values because the spline coefficients of the models usually are not of

direct interest. We can construct confidence intervals for quantities of interest, for instance

the marginal value of productivity in the estimation of production functions, based on the

asymptotic properties of the estimators.

Theorem 2. Suppose that λ is a fixed smoothing parameter. Under assumptions 1, 2,

3(a), 4 and 5, a sequence of penalized spline estimators θ̂(λ)
p→ θ(λ) as n → ∞. Denote
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Y (λ) = f(X; θ(λ)) and Ŷ (λ) = f(X; θ̂(λ)). Then
√
n(Ŷ (λ) − Y (λ))

d→ N (0, V (λ)) as

n→∞, where

V (λ) = σ2(PW (λ) + P 2
Z(λ)). (14)

Define V̂ (λ) = s2(P̂W (λ) + P̂ 2
Z(λ)). V̂ (λ)

p→ V (λ) as n→∞.

Denote by V̂i(λ) the ith diagonal element of V̂ (λ). We construct the asymptotic (1−α)%

confidence interval of Ŷi by

Ŷi ± z1−α/2
√
V̂i(λ), (15)

where z1−α/2 is the critical value from the standard normal distribution at the confidence

level α.

Remark 7. The confidence interval (15) is about Y (λ) = E[f(·; θ̂(λ)], the best projection,

rather than f(·; θ0). This is a well-known issue with series-based nonparametric estimations,

of which the bias terms are generally not available. Although bias is inherent in nonpara-

metric regression, approximate unbiasedness is often assumed and (15) can be interpreted

as approximate confidence interval. Since this approximate confidence interval is oftentimes

over optimistic, Hastie and Tibshirani (1990) suggested replacing z1−α/2 in (15) with t1−α/2,df ,

where df is the proper degrees of freedom for nonparametric regressions. Eubank (1999) sug-

gested Bonferroni methods to calculate confidence bands. Ruppert et al. (2003) discussed

bias-corrected confidence intervals.

Remark 8. Our estimator is semiparametric with two parametric coefficients. Taking m̂ as

nuisance parameters, the estimator can be viewed as a two-step estimator with nonparametric

first step estimates. Newey (1994) and Ai and Chen (2007) discussed the estimation of

asymptotic semiparametric variance of the second stage estimates. Recently Ackerberg et al.

(2012) showed that the asymptotic parametric variance that ignores the nonparametric nature

of the first stage (for instance, the method of Newey (1984)) is numerically identical to the

semiparametric variance. In particular, Ackerberg et al. (2012) provided several examples

that use sieve estimators in the first step. The penalized spline estimator investigated in this

study fits into their framework naturally.

Lastly, we derive the asymptotics with λn → 0, corresponding to the limiting case where

13



the shrinkage bias is asymptotically negligible. Define P 0
W = PW (θ0) and P 0

Z = PZ(θ0)

evaluated at λ = 0. We can then establish the following result.

Theorem 3. Suppose that conditions 1, 2, 3 hold and conditions 4 and 5 hold with λ = 0.

If the smoothing parameter λn = o(n−1/2), then a sequence of penalized spline estimator

θ̂(λn)
p→ θ0 as n→∞. Denote Ŷ (λn) = f(X; θ̂(λn)). Then

√
n(Ŷ (λn)− Y )

d→ N (0, V 0) as

n→∞, where

V 0 = σ2(P 0
W + P 0

Z). (16)

Remark 9. The limiting PZ(λn), defined in (13), is obtained by setting λn = 0, yielding

P 0
Z = Z(ZTZ)−1ZT .

Since P 0
z is now idempotent, we have P 0

Z instead of (P 0
Z)2 as in (14). For finite sample

inference, one would expect V 0 overestimate the variance of θ̂(λn) for a given λn > 0.

5 Specification of Spline Basis and Smoothing Param-

eter

Implementation of the penalized spline estimators entails the specification of spline basis

functions and smoothing parameters. The former includes the type of splines, number and

location of knots. Commonly used splines include the truncated power series, B-splines and

radial basis splines. The spline literature indicates that the practical differences among these

splines are oftentimes quite small.

Because penalized spline estimations normally use a relatively generous spline basis, the

number and location of knots play a relatively minor role in the estimation. We follow the

automatic knot selection rule of Ruppert (2002), where the number of knots is given by

M = min(
1

4
× number of uniqueX, 35), (17)

and the knots are placed at the m/(M + 1)-th sample quantile of the unique X’s for m =

1, . . . ,M .
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It is well known that spline estimators depend crucially on the smoothing parameter

(cf. Ruppert, 2002). A commonly used approach for smoothing parameter selection is the

method of cross validation (CV). Let Ŷ(i) be the prediction of Yi by a given estimator that

uses all but the ith observation. The ‘leave-one-out’ least squares cross validation criterion,

in terms of sum of squared residuals, is given by

CV =
n∑
i=1

(
Yi − Ŷ(i)

)2
.

Direct implementation of the cross validation is straightforward but often costly, espe-

cially for nonlinear nonparametric estimators without analytical solutions. For linear esti-

mators, there exists an exact formula to evaluate the least squares cross validation criterion

function, using only regression results based on the full sample. This exact solution usually

does not exist for nonlinear estimations. Nonetheless, there exist approximate formulations

that have been shown to give rather close results. Below we derive an approximate formula

of the cross validation criterion for the proposed estimator. For i = 1, . . . , n, denote by ĉ(i)

the solution to
1

n

n∑
k=1,k 6=i

(Yk − β0 − β1m(Xk; c))
2 + λD(m(x)),

and Ŷ(i) be the prediction of Yi evaluated at ĉ(i). We establish the following result.

Theorem 4. Let si be the ith diagonal element of PZ given in (13) and ŝi its corresponding

sample analog, i = 1, . . . , n. The Cross Validation (CV) criterion satisfies

CV =
n∑
i=1

(Yi − Ŷ(i))2 =
n∑
i=1

(
Yi − Ŷi
1− ŝi

)2

+ op(1). (18)

Generalized Cross Validation (GCV) is a widely used and often more robust alternative

to the CV criterion. It can be obtained by replacing 1 − ŝi in (18) with 1 − 1
n
tr(P̂Z) (cf.

Wahba, 1990). One can infer readily from Theorem 4 that in our case

GCV ≈
n∑
i=1

(
Yi − Ŷi

1− 1
n
tr(P̂Z)

)2

=
n∑
i=1

(
Yi − Ŷi

1− 1
n

∑n
i=1 ŝi

)2

.
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Remark 10. An alternative criterion of smoothing parameter selection is the estimated risk

(cf. Eubank 1999). Although conceptually simple, this criterion requires a proper prior es-

timate of σ2. However, the optimal smoothing parameter for a conditional mean estimator

generally is not optimal for the variance estimator. Another option is a likelihood based

method that treats the spline coefficients as random coefficients. We model the spline coeffi-

cients as zero mean Gaussian processes and estimate using a mixed effect random coefficient

model. Cf. Wand (2006) for an overview of this approach.

6 Multiple regressions

In this section we consider the case where y is a function of J(≥ 2) variables, being monotone

and concave in each regressor. For multiple regressions, we adopt the convention that all

notations, whenever necessary, are indexed by a subscript to make explicit their dependence

on the specific coordinate j = 1, . . . , J . We focus on the case of the additive model:

Yi = β0 +
J∑
j=1

βjmj(Xj,i) + ei, m
′
j > 0 andm′′j < 0.

For a general treatment of additive models, see Hastie and Tibshirani (1990).

We estimate the additive model using the penalized spline estimator by minimizing the

following objective function:

1

n

n∑
i=1

(
Yi − β0 −

J∑
j=1

βjmj(Xj,i)

)2

+
J∑
j=1

λjDj,

where Dj = D(mj(x)) and λj is the corresponding smoothing parameter for j = 1, . . . , J .

To ease the notational burden, we suppress the dependence of various quantities on λ in

this section. The Gauss-Jordan algorithm described above for the single covariate case can

be extended to the multiple covariates case by updating the coefficients cj, j = 1, ..., J ,

sequentially via back-fitting. Alternatively, we can update all coefficients simultaneously for
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possible efficiency gains. For j, k ∈ (1, . . . , J), define

Ŝj =
1

n
β̂jẐ

T
j ê− λjD̂′j,

and

R̂j,k =

 1
n
β̂2
j Ẑ

T
j Ẑj + λjD̂

′′
j , if j = k;

1
n
β̂jβ̂kẐ

T
j Ẑk, if j 6= k,

where Ẑj = (ẐT
j,1, . . . , Ẑ

T
j,n)T with Ẑj,i = ∂mj(Xj,i; ĉj)/∂cj. Further define ĉ = (ĉT1 , . . . , ĉ

T
J )T ,

Ŝ = (ŜT1 , . . . , Ŝ
T
J )T , and

R̂ =


R̂1,1 · · · R̂1,J

...
. . .

...

R̂J,1 · · · R̂J,J

 .
The coefficients ĉ are then updated simultaneously according to

ĉ = ĉ− − R̂−1Ŝ. (19)

Given the current estimate ĉ, β = (β0, . . . , βJ)T is calculated using the ordinary least squares

estimator. This process is iterated to update c and β alternatively until convergence.

Next let W be a n by J + 1 matrix with the ith row Wi = (1,m1(X1i), . . . ,mJ(XJi)) and

B = (β1Z
T
1 , . . . , βJZ

T
J )T . Define

PW = W (W TW )−1W T ,

PZ = BTRB,

where R is defined analogously to R̂. The residual variance is estimated by

s2 =

∑n
i=1 ê

2

n− 1− J − tr(P̂Z)
.

The variance of the predictions of the additive model can then be calculated as

V̂ = s2(P̂W + P̂ 2
Z).
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A detailed investigation of the theoretical properties of the multiple regressions is beyond

the scope of the current paper. We conjecture that under similar regularity conditions, the

large sample properties derived in the previous section apply here (cf. Aerts, et al. (2002)

for asymptotics of penalized spline estimators for additive models.)

7 Monte Carlo Simulations

In this section we use Monte Carlo simulations to assess the finite sample performance of

our proposed estimator. We consider the following experiments:

• Experiment I:

Yi = f1(Xi) + ei = 1 + log(0.1 +Xi) + ei

• Experiment II:

Yi = f2(Xi) + ei = 5− 5× exp(1−Xi) + ei

• Experiment III:

Yi = f21(X1i) + f22(X2i) + ei

= 1 + 2× log(0.01 +X1i) + 3× log(0.01 +X2i) + ei

In all three experiments, we set the sample size n = 100, X be iid random variables from

the standard uniform distribution, and e be iid random errors from the standard normal

distribution. Each experiment is repeated 300 times. Experiments I and II study univariate

monotone and concave functions, while Experiment III examines an additive function with

two components, each being monotone and concave.

In each experiment, we estimate the underlying relationship using the proposed estimator.

We use the cubic B-spline basis and the number and locations of knots are determined

according to the automatic knot selection rule (17). We experiment with the CV, GCV and

the likelihood based method of smoothing parameter selection. The results are quantitatively

similar. To save space, we only report results based on the GCV.
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For comparison, we consider two alternative estimators: the cubic smoothing spline esti-

mator and the cubic polynomial estimator. The smoothing spline estimator is most flexible

and does not impose any shape constraints. The cubic polynomial estimator represents the

other extremum, which is the limiting case of cubic smoothing spline estimator when its

smoothing parameter approaches infinity.

We use two criteria to gauge the performance of these competing estimators. For

goodness-of-fit, we report the mean and median of the mean squared errors across all repe-

titions. To check their compliances with shape restrictions, we evaluate the first and second

derivatives of the fitted curves for each observation and report the percentage of observation-

specific monotonicity and concavity of the fitted curves evaluated at sample values.

Table 1: Simulation Results

Estimator Experiment I Experiment II Experiment III

Mean-MSE
S-Spline 307 336 1811

Polynomial 360 406 2616
Spline 388 366 1907

Median-MSE
S-Spline 254 250 1629

Polynomial 314 324 2549
Spline 331 277 1846

Monotonicity (%)
S-Spline 100 100 100 100

Polynomial 93 96 99 99
Spline 95 98 92 94

Concavity (%)
S-Spline 100 100 100 100

Polynomial 70 66 69 68
Spline 51 51 66 65

Denote by ‘S-Spline’ the shape-restricted semiparametric estimator, and by ‘Polynomial’

and ‘Spline’ the cubic polynomial and smoothing spline estimators respectively. Table 1

reports the simulation results. The S-Spline outperforms the other two estimators in all

three experiments in terms of mean-MSE and median-MSE. By construction, monotonicity

and concavity are satisfied globally under the S-Spline. For the other two estimators, we

calculate their first and second order derivatives numerically on each data point. In Exper-

iment III, the monotonicity and concavity percentages are reported separately for the two

additive components. Our results show that monotonicity is satisfied in most cases, while

the percentages of estimates satisfying concavity range from 50 to 70 percent. This is not
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unexpected considering that higher order derivatives are generally more difficult to estimate.

Some illustrative results of Experiment I are presented in Figure 1. The left panel reports

a typical picture of the regression results. The black curve is the constrained estimate, which

is monotone and concave. The red line depicts the polynomial estimate, which appears to

be concave on the observed range but is not monotone increasing near the right end. The

smoothing splines estimate, represented by a blue line, is the most flexible and exhibits

multiple violations of monotonicity and concavity. The right panel plots one estimated curve

by the constrained estimator, along with its approximate 95% variation bound indicated by

the red lines. Also reported is the bootstrapped variation bound, based on 100 re-sampled

estimates, in blue lines. One can see that the asymptotic bound closely tracks that produced

by a bootstrap procedure, which is computationally more expensive.
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Figure 1: Left: estimated curves (black: S-Spline; red: Polynomial; blue: Spline); Right:
95% variation bound about a fitted curve (red: asymptotic; blue: bootstrap)
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8 Empirical applications

In this section, we present two illustrative applications of the proposed method. The first

application investigates the relationship between revealed risk attitude and optimism. The

data come from a survey conducted by Mansour et al. (2008). In this survey, participants

were offered the opportunity to enter a heads-and-tails game. A coin is flipped ten times;

each time a head appears, the participant receives 10 euros. The participant is then asked

to estimate the number of times heads will occur. The participant is also asked to reveal the

maximum amount she is willing to pay (WTP) in order to take part in this game. The aim

of this experiment is to obtain measures of individual levels of optimism and risk aversion.

The sample has n = 1, 536 observations. Summary statistics of the data are reported in the

top panel of Table 2. On average, the participants are pessimistic (the average expectation

3.9 is less than 5, the unbiased expectation) and risk averse (the average WTP 16.3 is below

the fair expectation 50 and also below 39, which is the expected risk neutral WTP given the

average expectation of 3.9).

Table 2: Summary statistics

Mean S.D. Min. Max.
Risk and Optimism Data
Optimism 3.9 1.8 0 10
WTP 12.0 13.6 0 100
Production Data
Output 16.3 8.3 1.7 37.1
Capital 4.8 2.8 9.6 0.3
Labor 57.7 27.2 1.1 98.9

For i = 1, . . . , n, let Yi be individual i’s estimation of the number of heads, and Xi

her maximum willingness to pay. We are interested in estimating the relationship between

these two measures. According to preference and utility function theories, there exists a

monotone relationship between risk aversion and optimism (see Mansour et al. (2008) and

references therein). Taking the WTP as a proxy for degree of risk aversion or risk loving, one

expects a monotone increasing relationship between Yi and Xi. Since measures of optimism

are naturally bounded from above by 10, we expect the Yi as a function of Xi to level off
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as Xi gets large (there is no upper bound for Xi; but as expected, no participants offered

more than 100 euros). Therefore, it is plausible that Y = f(X) is monotone increasing and

concave.
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Figure 2: Risk tolerance vs optimism: data and estimates (shaded areas represent 95%
variation bounds)

The upper right plot of Figure 2 shows the participants’ answers to the two questions,

clearly implying a monotone and possibly concave relationship between these two measures.
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Thus in our illustration, we apply the proposed method to the following model:

Yi = f(Xi) + ei, i = 1, . . . , n,

where f ′ > 0 , f ′′ < 0, and ei are iid errors with mean zero and finite variance. For

comparison, we also estimate the model using the cubic polynomial estimator and the cu-

bic smoothing spline estimator. The estimation results are reported Figure 2. All three

estimators capture the general patterns of the data. Also plotted are the 95% confidence

intervals.

The smoothing spline estimate clearly fails to be monotone increasing. A close exam-

ination of the data indicates that there are several possible outliers with low degrees of

optimism but high WTP, suggesting inconsistency in the preferences of these participants.

These outliers appear to exert a disproportionately large influence on the smoothing spline

estimate. The polynomial estimate is closer to the constrained estimates, but is not concave.

The slight acceleration in optimism near the top end of the WTP range does not seem to

be supported by the data. This spurious pattern most likely are due to oscillations typically

associated with ‘global’ projection estimators, particularly power series estimators, where

performance of fitting in one region of the curves may affect that capability in a different

region. In contrast, local smoothers, such as kernel or spline estimators, do not suffer these

types of global oscillations.

Across all three estimates, the confidence intervals are tighter for small values of WTP and

gradually increase with WTP, largely due to number of observations falling rapidly as WTP

rises. Nonetheless, the constrained estimate exhibit the smallest variance near the upper

boundary, suggesting its robustness against potential outliers and sparsity of observations.

The second example concerns the estimation of a production function. According to

economic theory, production functions are monotone increasing and concave with respect to

inputs (cf. Diewert and Wales (1987)). We use the benchmark data in Coelli (1996), which

contains information on the level of output and capital and labor inputs of 60 firms. The

bottom panel of Table 2 reports summary statistics of the data set.
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We assume that the production function takes the following additive form:

Qi = f1(Ci) + f2(Li) + ei, i = 1, . . . , n,

where Q,C and L denote output, capital and labor respectively, ei are iid errors with mean

zero and finite variance, and n = 60. We also assume that f ′j > 0 and f ′′j < 0 for j =

1, 2. As in the previous example, we estimate the model using the constrained estimator,

the polynomial estimator and the smoothing spline estimator. The estimation results are

reported in Figure 3. The right panel plots the estimated surface and the left panel their

corresponding contours. The general shape captured by the three estimators is similar.

However, the monotonicity condition is clearly violated in the polynomial and smoothing

spline estimates.

9 Concluding Remarks

We have proposed a semiparametric estimator that accommodates shape restrictions such

as monotonicity and concavity. Our method employs an integral transformation to achieve

the desired shape constraints. The resulting estimates satisfy the constraints globally. We

use penalized splines to achieve flexibility while maintaining shape constraints. We have

proposed an iterative algorithm and a cross validation criterion for smoothing parameter

selection. We have derived the asymptotic variance of the proposed estimator and have fur-

ther extended the proposed method to multiple regressions under the framework of additive

models. Our Monte Carlo simulations and two empirical examples illustrate the appeal of

the estimator in terms of its finite sample performance and its usefulness in capturing the

shape restrictions while also providing relative flexibility in fitting the nonlinear relationships

we have estimated.

We conclude by suggesting some possible generalizations of the proposed method. First,

the current model considers continuous outcomes. Generalization to discrete or range-limited

variables in the framework of the generalized linear models, as in Shively et al. (2011), is

a natural extension of the approach we have taken. Second, we envision that our methods

can be generalized to accommodate inter-temporally or spatially correlated errors, or com-
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Figure 3: Estimated production function (Top: Constrained estimate; Middle: Polynomial
estimate; Bottom: Smoothing spline estimate)
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posite errors as in the case of panel data analysis. Third, we restrict ourselves to additive

models in this study. Relaxations of this restriction to accommodate interactions or more

general non-separable structures while maintaining shape constraints may be of interest for

future research. Lastly, we acknowledge that it is desirable to be able to test the validity of

constraints implied by economic theories. Heckmam and Ramsay (2000) presented the L-

spline estimators, whose model-based penalties are defined via linear differential functions.

Their method provides a natural framework to test the validity of constraints implied by

differential equations, such as those used in our estimator.
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Appendix

Proof of Theorem 1. We can rewrite the objective function as

Qλn(θ) =
1

n

n∑
i=1

{Yi − f(Xi; θ
0) + f(Xi; θ)− f(Xi; θ

0)}2 + λnD(f(θ))

=
1

n

n∑
i=1

e2i +
2

n

n∑
i=1

{f(Xi; θ
0)− f(Xi; θ)}2ei +

1

n

n∑
i=1

{f(Xi; θ
0)− f(Xi; θ)}2 + λnD(f(θ)).

Under assumptions 1, 2, and 3a, the first and third terms converge to σ2 and Q(θ) respec-

tively, and the second term converges to zero. In addition, the last term vanishes if λn → 0.

It follows that

Qλ(θn)
p→ Q(θ) + σ2

if λn = o(1).
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Next let θ̂(λn) be the penalized least square estimators. It follows that

Qλn(θ̂(λn)) ≤ Qλn(θ0).

Under assumption 3.a, the left hand side converges to, say, Q(θ′) + σ2, θ′ ∈ Θ. It follows

that

Q(θ′) + σ2 ≤ Q(θ0) + σ2 = σ2,

implying Q(θ′) = 0. Thus under assumption 3a and 3b, we have θ′ = θ0, which establishes

the consistency of the penalized least square estimator.

Proof of Theorem 2. Rewrite

Ŷ (λ)− Y (λ) = {Ŵ (λ)−W (λ)}β̂(λ) +W (λ)(β̂(λ)− β(λ)).

It follows that

Var(Ŷ (λ)) =Var((Ŵ (λ)−W (λ))β̂(λ)) + Var(W (λ)(β̂(λ)− β(λ)))

+ 2cov((Ŵ (λ)−W (λ))β̂(λ),W (λ)(β̂(λ)− β(λ))). (A.1)

First note that the third term vanishes asymptotically. Since β(λ) = (W (λ)TW (λ))−1W (λ)Y (λ),

it follows readily that

Var(W (λ)(β̂(λ)− β(λ))) = σ2PW (λ). (A.2)

From (11), we have under assumption 5 that

Var(
√
n(ĉ(λ)− c(λ)) = Ω(λ),

with

Ω(λ) = σ2(β1(λ)Z(λ)(β2
1(λ)Z(λ)TZ(λ) + nλD′′)−2(β1(λ)ZT (λ)).
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Next note that

(Ŵ (λ)−W (λ))β̂(λ) = (Ŵ (λ)−W (λ))β(λ) + op(1)

= β1(λ)(m(X; ĉ(λ))−m(X; c(λ))) + op(1)

= β1(λ)Z(λ)(ĉ(λ)− c(λ)) + op(1).

It follows that

Var((Ŵ (λ)−W (λ))β̂(λ)) = (β1Z
T (λ))Ω(λ)(β1(λ)ZT (λ)) = σ2P 2

Z(λ). (A.3)

Combining (A.2) and (A.3) then yields (14). Under assumptions 1, 2, 3(a), 4 and 5, the

asymptotic normality can be readily established under the central limite theorem.

Lastly the variance of the error terms is estimated by (
∑n

i=1 ê
2
i )/(d.o.f.), where the de-

grees of freedom is given by n subtracted the effective number of parameters. The proposed

semiparametric estimator has two parametric parameters, and the effective number of pa-

rameters (rank of the smoother) for the nonparametric part is calculated as tr(P̂Z)(λ) (Cf.

Ruppert et al. (2003)). It follows that s2
p→ σ2 as n→∞. In addition, it is straightforward

to show that β̂(λ), P̂W (λ) and P̂Z(λ) converge in probability to β(λ), PW (λ) and PZ(λ) as

n→∞. It follows that under assumption 5, V̂ (λ)
p→ V (λ) as n→∞, which completes the

proof of this theorem.

Proof of Theorem 3. From (11) we have

ĉ(λn) = (
1

n
β̂2
1Ẑ

T Ẑ + λnD̂
′′)−1

(
1

n
β̂1Ẑ

T Ỹ + λn(D̂′ − D̂′′ĉ−)

)
= (

1

n
β̂2
1Ẑ

T Ẑ + λnD̂
′′)−1

(
1

n
β̂1Ẑ

T Ỹ + op(1)

)
≡ (

1

n
BTB + λnD̂

′′)−1(
1

n
BT Ỹ + op(1)).

A Taylor expansion of the above with respect to λn around zero, using that (I + λA)−1 =
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I − λA+ o(λA) as λ→ 0 yields

ĉ(λn) = ((
1

n
BTB)−1

1

n
BTB + λnD̂

′′)−1(
1

n
BTB)−1(

1

n
BT Ỹ + op(1))

= (I − λnD̂′′ + o(λnD̂
′′))(

1

n
BTB)−1(

1

n
BT Ỹ + op(1))

= (BTB)−1BT Ỹ + o(λnD̂
′′) + op(1)

= c0 + o(λnD̂
′′) + op(1),

where the last equality is due to the consistency of ĉ(λn) as λn → 0 given in Theorem 1.

Next we can show that the variance of ĉ(λn) is of order σ2/n. It follows that MSE(ĉ(λn)) =

Op(σ
2/n + λ2n) for bounded D̂′′ (which is implied by the compactness of Θ). Thus for the

asymptotic bias to vanish, we need λn = o(n−1/2). The asymptotic normality of the limiting

case can then be established using essentially the same proof as for Theorem 2 and replacing

the fixed λ with zero, the limiting value of λn.

Proof of Theorem 4. Let ĉ(i, w) be the solution to the following optimization

(w − β0 − β1f(Xi))
2 +

n∑
k=1,k 6=i

(Yk − β0 − β1f(Xk))
2 + λD(f(x)). (A.4)

It follows that ĉ(i, Ŷ(i)) = ĉ(i).

Let ∆(i) be an n× 1 vector of zeros except that the ith element equals Ŷ(i) − Yi. We can

then write

ĉ(i) = (β̂2
1Ẑ

T Ẑ + λ

∫
X
D′′(x)dx)−1β̂1Ẑ

T (Ỹ + ∆(i)).

It follows that

Ỹ(i) =β̂1Ẑ
T
i ĉ(i)

=β̂1Ẑ
T
i (β̂2

1Ẑ
T Ẑ + λ

∫
X
D′′(x)dx)−1β̂1Ẑ

T Ỹ

+ β̂1Ẑ
T
i (β̂2

1Ẑ
T Ẑ + λ

∫
X
D′′(x)dx)−1β̂1Ẑ

T∆(i)

=Ỹi + si(Ŷ(i) − Yi). (A.5)
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Next we use the Taylor approximation on Ŷ(i) to obtain

Ỹ(i) =Ŷ(i) − β̂0 − β̂1f(Xi; ĉ)− β̂1ẐT
i (ĉ(i) − ĉ) + β̂1Ẑ

T
i ĉ(i) + op(1)

=Ŷ(i) − β̂0 − β̂1f(Xi; ĉ) + β̂1Ẑ
T
i ĉ+ op(1).

It follows that

Ỹ(i) − Ỹi = Ŷ(i) − Ŷi + op(1). (A.6)

Plugging (A.6) into (A.5) and rearranging terms yields

Yi − Ŷ(i) =
Yi − Ŷi
1− si

+ op(1),

which gives (A.4) readily.
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