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The Chapter �rst discusses how productivity growth typically has been measured in classical
productivity studies. We then briey discuss how innovation and catch-up can be distinguished
empirically. We next outline methods that have been proposed to measure productivity growth
and its two main factors, innovation and catch-up. We show how such methods have particular
canonical representations that seamlessly transfer to the panel data literature and discuss a number
of competing speci�cations introduced into the productivity literature. We then point out how such
models can be combined to provide consensus model average estimates of innovation and catch-up,
utilizing results from recent work by Hao (2012) on world productivity growth. The Chapter ends
with concluding remarks and suggestions for the direction of future analysis.
The literature on productivity and its sources is vast in terms of empirical and theoretical con-

tributions at the aggregate, industry and �rm level. The pioneering work of Dale Jorgenson and
his associates1 and Zvi Griliches and his associates2, the National Bureau of Economic Research3,
the many research contributions made in U. S. universities and research institutions, the World
Bank and research institutes in Europe and other countries are not discussed here as our goal is by
necessity rather narrow. We focus on work directly related to panel data methods that have been
developed to address speci�c issues in specifying the production process and in measuring the sources
of productivity growth in terms of its two main components of innovation (technical progress) and
catch-up (e�ciency growth), with emphasis given to one of the more important measures of the
latter component and that is technical e�ciency.

�The authors wold like to thank Editor Badi Baltagi and two anonymous referees for their constructive suggestions
that improved our Chapter substantially. The usual caveat applies.

1For a survey of some of Jorgenson's voluminous work on productivity, see Dale W.Jorgenson's Productivity-Vol.
I and II (MIT Press, Cambridge, Mass., 1995), Vol III (MIT Press, 2005).

2For Griliches' work on this subject the reader should consult the working papers of the NBER Productivity
Program over the years before his untimely death in 1999, and over the years since. Mairesse (2003) contains a
thoughtful overview of his many contributions to the �eld of productivity measurement.

3The NBER Productivity, Innovation, and Entrepreneurship Program was led originally by Griliches who was
followed by Ernst Berndt and is currently co-directed by Nicholas Bloom and Josh Lerner.
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1 Productivity Growth and Its Measurement

1.1 Classical Residual based Partial and Total Factor Productivity Mea-
surement

Measurements of productivity usually rely on a ratio of some function of outputs (Yi) to some
function of inputs (Xi). To account for a changing input mix, modern index number analyses
utilize some measure of total factor productivity (TFP ). In its simplest form, this is a ratio of
output to a weighted sum of inputs:

TFP =
YP
aiXi

: (1)

Historically, there are two common ways of assigning weights for this index. They are to use
either an arithmetic or geometric weighted average of inputs. The arithmetic weighted average,
due to Kendrick (1961), uses input prices as the weights while the geometric weighted average
of the inputs, attributable to Solow (1957), uses input expenditure shares as the weights. The
predominant TFP measure currently in use by the central governments in most countries is a
variant of Solow's measure based on the Cobb-Douglas production function with constant returns
to scale, Y = AX�

LX
1��
K , and leads to the TFP measure:

TFP =
Y

X�
LX

1��
K

: (2)

At cost minimizing levels of inputs, the parameter � describes the input expenditure share for
labor. The TFP growth rate is the simple time derivative of TFP and is given by:

T _FP =
dY

Y
�
�
�
dXL
XL

+ (1� �)dXK
XK

�
:

Where multiple outputs exist, TFP can also be described as a ratio of an index number describing
aggregate output levels(yj) divided by an index number describing aggregate input levels(xi). As
such, they derive many of their properties based on the assumptions of the underlying aggregator
functions used. Fisher (1927) laid out a number of desirable properties for these index numbers.
Many of these properties are easily achievable, while others are not (Good, Nadiri, and Sickles, 1996).
Following Jorgenson and Griliches (1972), a total factor productivity index can be constructed as
the di�erence between log output and log input indices.

1.2 Modi�cations of the Neoclassical Model: The New Growth Theory

Endogenous growth models were developed to weaken the strong neoclassical assumption that long-
run productivity growth could only be explained by an exogenously driven change in technology.
An alternative interpretation to the endogenous growth literature is that it was a response to the
simplistic view that the bene�ts of technical change (aka `manna from heaven', Scherer, 1971) were
determined 'outside the system.' However, technological change as result of economic factors was
discussed in Griliches' 1957 Ph.D. dissertation and his concurrent article Griliches (1957), wherein
he pointed out that hybrid corn seed penetration followed a logistic distribution. The di�usion of
innovations and the technological change it engenders has much in common with the penetration
of seeds varieties in agricultural production. It is thus no surprise that numerous instances of
such patterns were found by many researchers, including a productivity pioneer in his own right,
Edwin Mans�eld (1961) whose treatment of technological change and the rate of imitation was in
its own right equally prescient. The classic model put forth by Romer (1986), which began the \new
growth theory," allowed for non-diminishing returns to capital due to external e�ects. For example,
research and development by a �rm could spill over and a�ect the stock of knowledge available to
all �rms. In the simple Romer model �rms face constant returns to scale to all private inputs. The
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level of technology A can vary depending on the stock of some privately provided input R (such as
knowledge) and the production function is formulated as

Y = A(R)f(K;L;R)

In the "new" growth theory the production frontier is shifted by factors that are endogenous.
What is the source of the spillover? Arrow (1962) emphasized \learning-by-doing." Romer (1986)
modeled A as a function of the stock of research and development, Lucas (1988) as a function of
stock of human capital, Coe and Helpman (1995) and Coe, Helpman, and Ho�maister (1997) as a
function of trade spillovers, Diao, X., Ratts�, J., and Stokke (2005) as a function of trade openness.
If the explanation for the spillover that endogenously determines technology change is the loosening
of constraints on the utilization of that technology, then this is just a another way of saying that
TFP growth is primarily determined by the e�ciency with which the existing technology (inclusive
of innovations) is utilized.
Another comment about endogenous growth models and the need to address endogeneity issues in

productivity analyses needs to be made here. The literature on structural modeling of productivity
models is quite dense and, again, it is not within the scope of this Chapter to discuss this very
important literature. However, there is a particular literature within the broader structural modeling
of static and dynamic productivity model (see for example, Olley and Pakes, 1996) that speaks to the
focused issues addressed in this chapter and that is the role of errors-in-variables, weak instrument
bias, and stability in panel data modeling of production processes. These issues have been taken up
by a number of researchers, especially those from the NBER and include studies by Griliches and
Hausman (1986), Stoker, Berndt, Ellerman, Schennach (2005), Griliches and Mairesse (1990, 1998),
and Griliches and Pakes (1984), to name but a few.

1.3 Technical E�ciency in Production

Ine�ciencies in production arise from, among other things, random processes, market power (Kutlu
and Sickles, 2012), and historical precedent. Moreover, such ine�ciencies appear not to be transi-
tory in many industries (Alam and Sickles, 2000). Alternatives to the Solow type neoclassical model
of productivity focus on a component neglected in the traditional neoclassical approach, technical
ine�ciency. Since the fundamental theoretical work by Debreu (1951), Farrell (1957), Shepherd
(1970 ) and Afriat (1972), researchers have established a method to measure the intrinsically unob-
servable phenomena of e�ciency. Aigner, Lovell, and Schmidt (1977), Battese and Cora (1977), and
Meeusen and Van den Broeck (1977) provided the econometric methods for the applications waiting
to happen. The linear programming methodology, whose implementation was made transparent
by Charnes, Cooper, and Rhodes (1978), became available at about the same time.
The e�ciency score, as it is usually measured, is a normalized residual constructed from the

economic theory of the �rm and assumed orthogonality assumptions. This is essentially how it is
di�erentiated from the Solow residual interpretation of productivity, which was developed to explain
technical change, not change in the best practice technology. Of course the two together, e�ciency
and technology change, are the drivers of productivity growth, along with scale economies. We will
not pursue the latter as a source of growth in this Chapter but it is quite important in �rm level
analyses. Parametric assumptions about the distribution of e�ciency and its correlation structure
often are made to sharpen the interpretation of the residual. However, that e�ciency measurement
should be highly leveraged by parametric assumptions is by no means a comforting resolution to
this measurement problem. Productivity de�ned by the Solow residual is a reduced form concept,
not one that can be given a structural interpretation. E�ciency estimators di�er on what iden-
tifying restrictions are imposed. Not surprisingly, di�erent e�ciency estimators often provide us
with di�erent cross-sectional and temporal decompositions of the Solow residual. Kumbhakar and
Lovell (2000) and Fried, Lovell, and Schmidt (2008) have excellent treatments of this literature and
address the continuing debate on how the distributional assumptions made in early work in the
panel productivity literature by Pitt and Lee (1981), Schmidt and Sickles (1984) and others drive
the estimates of e�ciency.
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1.4 Alternative Explanations for Sources of Economic Growth-Explicit
Modeling of Technical E�ciency via the Panel Stochastic Frontier
Model

The sources of world economic growth using alternatives to the neoclassical model can be estimated
by explicitly introducing the role of catch-up due to increases in the level of productive e�ciency.
Introducing the role of e�ciency in production means introducing some form of frontier production
process, such as the stochastic frontier production (Aigner, Lovell, and Schmidt, 1977). However,
the inability of such cross-sectional approaches to identify e�ciency di�erences in di�erent countries
and temporal changes in those measures, or catch-up is a major drawback of the cross-sectional
stochastic frontier. For such a model it is also necessary to specify parametric distributions for the
idiosyncratic and ine�ciency error terms in the composed error. This led researchers to quickly
pursue panel data methods, such as those introduced by Pitt and Lee (1981) and Schmidt and Sickles
(1984). These, however, did not allow the country e�ects to vary over time and the innovations by
Cornwell, Schmidt, and Sickles (1990) and Kumbhakar (1990), Battese and Coelli (1992), Lee and
Schmidt (1993) addressed this shortcoming. Kim and Lee (2006) generalized the Lee and Schmidt
(1993) model by considering di�erent patterns for di�erent groups, thus eliminating their unrealistic
restriction that the temporal patterns be the same for all �rms. These new methods, allowing
for time-varying and country speci�c e�ciency change components as well as technical innovation
changes, were applied in a variety of empirical settings.
Proper speci�cation of the catch-up process and the constraints on its adjustment speeds within a

neoclassical growth model context also has been found to require a similar heterogeneous treatment
of the catch-up, or technical e�ciency growth, process. Hultberg, Nadiri, and Sickles (1999, 2004)
modify the standard neoclassical convergence model to allow for such heterogeneity in the e�ciency
catch-up rates. In Hultberg et al. (2004) the relationship between growth in labor productivity of
manufacturing sectors and transfers of technology from a leading economy to sixteen OECD countries
is analyzed. In the standard catch up literature, the greater the gap in per capita income between
low and high growth countries the faster the convergence occurs. However, this literature assumes
identical technologies across countries. In addition to the existence of an external technology gap,
the ability to adopt new technology is an important source of growth. They also �nd that proper
control for unobserved production heterogeneities is important in identifying the catching-up e�ect.
Hultberg et al.'s (1999, 2004) studies also are instructive in that the determinants of e�ciency

levels are proxied by a set of variables related to economic, political, and social institutions of a
country. Upward of 60% of the variation in e�ciency was attributed to the combined e�ects of the
institutional constraint proxies. At the level of the �rm, Bloom and Van Reeden (2007) studied
732 �rms in US, UK, France & Germany and found that productivity gaps could be explained by 18
key management practices. The most important of which were shop oor operations, monitoring,
targets, and incentives. These are of course factors typically determined by management and are
usually associated with management expertise, or managerial e�ciency.

1.5 Decomposition of Economic Growth-Innovation and E�ciency Change
Identi�ed by Index Numbers

Identifying the sources of TFP growth while imposing minimal parametric structure has obvious
appeal on grounds of robustness. Sharpness of inferences may, however, be comprised vis-a-vis
parametric structural econometric models. There has been a long standing tradition to utilize
index number procedures as well as reduced form or structural econometric estimation to quantify
TFP growth and its determinants. Space limits the coverage that this chapter can provide to such
important index number approaches. The interested reader is directed to the panel data literature
on productivity index numbers and to surveys (e.g., Good,et al, 1997; Fried et al., 2008), particular
advances in decomposing productivity change into technical and e�ciency growth via the Malmquist
index introduced into the literature by Caves, Christensen, and Diewert (1982) (F�are, Grosskopf,
Norris, and Zhang, 1994; Grifell-Tatj�e and Lovell, 1995; F�are, Grosskopf, Grifell-Tatj�e, and Lovell,
1997), problems with such index number approaches and decompositions (F�rsund and Hjalmarsson,
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2008), and numerical approaches via bootstrapping to construct inferential procedures to assess such
measures (Simar and Wilson, 2000; Jeon and Sickles (2004).

2 Decomposition of Economic Growth-Innovation and E�-

ciency Change Identi�ed by Regression

Regression based approaches to decompose productivity growth into technical change and e�ciency
change components can be based on the following generic model. Assume that the multiple output
/ multiple input technology can be estimated parametrically using the output distance function
(Caves, Christensen and Diewert, 1982; Coelli and Perelman, 1996). We consider distance or single
output production functions that are linear in parameters, such as the linear in logs Cobb-Douglas,
translog, generalized-Leontief and quadratic. These constitute the predominant functional forms
used in productivity studies. Our many treatments for various forms of unobserved heterogeneity
can be motivated with the following classical model for a single output technology estimated with
panel data assuming unobserved country (�rm) e�ects:

yit = xit� + �i(t) + vit (3)

where �i(t) represents the country speci�c �xed e�ect that may be time varying, xit is a vector of
regressors, some of which may be endogenous and correlated with the error vit or the e�ects �i(t):
We may interpret (3) as the basic regression model that comes from the following transformation

of the output distance function, which nests the single output production function that is predom-
inately used in aggregate growth studies. We start with a relatively simple representation of the
output distance function as an m�output, n�input deterministic distance function Do(Y;X) given
by the Young index, described in Balk (2008):

Do(Y;X) =

Qm
j=1 Y

j
itQn

k=1X
�k
it

� 1

The output-distance function Do(Y;X) is non-decreasing, homogeneous, and convex in Y and non-
increasing and quasi-convex in X. The output distance function is linearly homogeneous in outputs.
Thus, after taking logs, adding a disturbance term vit to account for nonsystematic error in observa-
tions, functional form, etc. and a technical e�ciency term �i(t) to reect the nonnegative di�erence
between the upper bound of unity for the distance function and the observed value of the distance
function for country i at time t; we can write the distance function as:

�y1;it =
mX
j=2

jy
�
jit +

nX
k=1

�kx
�
kit + �i(t) + uit

where y�jit;j=2;:::;m = ln(Yjit=Y1it) and x
�
kit = ln(Xkit). After rede�ning a few variables the distance

function can be written as
yit = xit� + �i(t) + vit:

The Cobb-Douglas speci�cation of the distance function (Klein, 1953) has been criticized for
its assumption of separability of outputs and inputs and for incorrect curvature as the production
possibility frontier is convex instead of concave. However, as pointed out by Coelli (2000), the
Cobb-Douglas remains a reasonable and parsimonious �rst-order local approximation to the true
function. The translog output distance function, where the second-order terms allow for greater
exibility, proper local curvature, and lift the assumed separability of outputs and inputs, can also
be framed in this canonical model representation of a linear panel model with country-speci�c and
time-varying heterogeneity. If the translog technology is applied, the distance function takes the
form:

�y1it =
mX
j=2

jy
�
jit+

1

2

mX
j=2

mX
l=1

jly
�
jity

�
lit+

nX
k=1

�kx
�
kit+

1

2

nX
k=1

nX
p=1

�kpx
�
kitx

�
pit+

mX
j=2

nX
k=1

�jky
�
jitx

�
lit+�it+uit
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Since the model is linear in parameters, then after rede�ning a few variables the translog distance
function also can be written as

yit = xit� + �i(t) + vit:

A similar transparent reparametrization of any distance function that is linear in parameters can be
used to estimate other linear in parameters distance or production functions such as the generalized
Leontief or quadratic. Of course if the technology involves multiple outputs, then the right hand
side endogenous variables must be instrumented. Whether or not the e�ects need to be instrumented
depends on their orthogonality with all or a subset of the regressors.
This is the generic model for estimating e�ciency change using frontier methods that we will

explore. If we assume that innovations are available to all �rms and that country- or �rm-speci�c
idiosyncratic errors are due to relative ine�ciencies, then we can decompose sources of TFP growth
in a variety of ways. The overall level of innovation change (innovation is assumed to be equally
appropriable by all countries) can be measured directly by such factors as a distributed lag of R&D
expenditures, or patent activity, or some such direct measure of innovation. It can be proxied by
the time index approach of Baltagi and Gri�n (1988), linear time trends, or some other type of
time variable. Innovation measured in any of these ways would be identi�ed under nonpathological
circumstances. Direct measures are identi�ed of course by the assumption that the matrix of regres-
sors has full column rank, and the indirect measures by functional form assumptions. For example,
the index number approach used in Baltagi and Gri�n is identi�ed by its nonlinear construction.
Innovation is also often proxied by exogenous or stochastic linear time trends (Bai, Kao, and Ng,
2009), which are often identi�ed by nonlinear speci�cations of time varying ine�ciency used in many
of the approaches below or by orthogonality conditions.
In this section we explore a number of regression-based methods introduced into the literature

to measure productivity growth and its decomposition into innovation and catch-up, or e�ciency
change. We base each of these speci�cations on the model summarized in eq.(3),

yit = xit� + �i(t) + vi

which nests all multi-output/multi-input panel models that are linear in parameters and can be used
to estimate productivity growth and decompose it into innovation and e�ciency change. We will
also assume that we have a balanced panel although this is done more for notational convenience
than for substantive reasons. The generic model of course nests all models that we introduce below
for which there is no temporal change in technical e�ciency. In this section we �rst discuss the most
common estimators in use and those that have been introduced rather recently and how they can
be implemented in empirical applications. In the subsequent section we then show how a number
of these methods can be used in a model averaging exercise to evaluate world productivity trends
from 1970 to 2000.

2.1 The Cornwell Schmidt and Sickles (1990) Panel Stochastic Frontier
Model

Extensions of the panel data model to allow for heterogeneity in slopes as well as intercepts by
Cornwell, Schmidt, and Sickles (CSS) (1990) allowed researchers to estimate productivity change
that was speci�c to the cross-sectional unit (�rms, industries, countries) that could change over time.
A special parameterization of the CSS model that accomplishes this objective is:

yit = xit� + �i(t) + vit

where
�i(t) =Wit�i + vit

The L coe�cients ofW , �i, depend on di�erent units i, representing heterogeneity in slopes. In their
application to the US commercial airline industry, Cornwell, Schmidt and Sickles (CSS) speci�ed
Wit = (1; t; t

2) although this was just a parsimonious parameterization useful for their application.
It does not in general limit the e�ects to be quadratic in time.
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A common construction can relate this model to standard panel data model. Let �0 = E[�i], and
�i = �0 + ui. Then the model can be written as:

yit = Xit� +Wit�0 + �it; (4)

�it =W
0
itui + vit: (5)

Here ui are assumed to be i.i.d. zero mean random variables with covariance matrix �. The
disturbances vit are taken to be i.i.d. random variable with a zero mean and constant variance �2,
and uncorrelated with the regressors and ui. In matrix form, we have:

y = X� +W�0 + �; (6)

� = Qu+ v: (7)

where Q = diag(Wi), i = 1; � � � ; N is a NT �NL matrix, and u is the associated NL�1 coe�cients
vector.

2.1.1 Implementation

Three di�erent estimators can be derived based on di�ering assumptions made in regard to the corre-
lation of the e�ciency e�ects and the regressors, speci�cally, the correlation between the error term
u and regressors X andW: They are the within (FE) estimator, which allows for correlation between
all of the regressors and the e�ects, the gls estimator, which is consistent when no correlation exists
between the technical e�ciency term and the regressors (Pitt and Lee, 1981; Kumbhakar, 1990), and
the e�cient instrumental variables estimator, which can be obtained by assuming orthogonality of
some of the regressors with the technical e�ciency e�ects. The explicit formulas for deriving each
estimator and methods for estimating the �i parameters are provided in the CSS paper. Relative
e�ciencies, normalized by the consistent estimate of the order statistics identifying the most e�cient
country, are then calculated as:

b�(t) = max
j
[b�j(t)]

and
REi(t) = b�(t)� b�i(t):

where REi(t) is the relative e�ciency of the ith country at time t. For this class of models the
regressors X contain a time trend interpreted as the overall level of innovation. When it is combined
with the e�ciency term b�j(t) we have a decomposition of TFP into innovation and catch-up. When
the time trend and the e�ciency term both enter the model linearly then the decomposition is not
identi�ed using the within estimator but is for the gls and for selected variants of the e�cient IV
model, such as those used in the Cornwell et al. airline study. In the study of world productivity
below we utilize the gls version of the CSS estimator (labelled CSSG) and the E�ciency IV estimator
(labelled EIV).

2.2 The Kumbhakar (1990) Panel Stochastic Frontier Model

Here we consider a linear in log production function:

yit = xit� + �i(t) + vit (8)

where
�i(t) = (t)�i: (9)

vit is assumed i.i.d. with distribution N(0; �2v); �i(t) is the ine�ciency term with time-varying
factor (t) and time-invariant characteristics �i. �i is assumed to be distributed as i.i.d. half-normal
distributed (t) is speci�ed as the logistic function

(t) = (1 + exp(bt+ ct2))�1

7



We can see that (t) is bounded between (0; 1) and that it accommodates increasing, decreasing or
time-invariant ine�ciency behavior as the parameters b and c vary. Although the Kumbhakar model
also estimates allocative e�ciency from side conditions implied by cost-minimization (Schmidt and
Lovell, 1979) we will only examine the portion of his model that directly pertains to the technical
ine�ciency/innovation decomposition of productivity change.

2.2.1 Implementation

Parametric maximum likelihood is used for estimation of the model. Using the Kumbhakar notation
let �it = (t)�i + vit: Then the joint distribution of of the composed error is f(�i; �i) = f(�i; �i),
and since both �it and vit are i.i.d and are independent of each other, the joint pdf is f(�i; �i) =
f(�i) � (

Q
t f(vit)) = f(�i)

Q
t f(�it � (t)�i).

Marginalizing over � , one can derive the distribution of �: The the log-likelihood function is then
de�ned as

L =
X
i

lnf(�i)

and the parameters are given by the argmax(L).
Consistent point estimates of the ine�ciency term can be based a method of moments estimator

for the conditional mean of �ij�i: Since

f(�ij�i) = (2��2�)�1=2
exp(� 1

2�2�
(� � ��i )2

�(���i =��)
; �i � 0

where � is the distribution function for standard normal then E(�ij�i) = ��i � ��
�(��i =��)
�(���i =��)

and

\E(�ij�i) = b�i: The best predictor of technical e�ciency is given by E(expf(t)�ij�ig)and e�ciency
for each �rm by b�i(t) = (t)b�i:
2.3 The Battese and Coelli Model (1992, 1995)

The production function is given by the generic model

yit = xit� + �i(t) + vit (10)

where the e�ects are speci�ed as

�i(t) = �fexp[��(t� T )]gui;

where vit are assumed to be a i.i.d. N(0; �
2
v) random variable and the uit are assumed to follow an

i.i.d. non-negative truncated N(�; �2) distribution. � is a scalar and the temporal movement of the
technical e�ciency e�ects depends on the sign of �. Time invariant technical e�ciency corresponds
to � = 0. To allow for a richer temporal path for �rm e�ciency e�ects that reect more possibility
of how �rm e�ects change over time, one can also specify �(t� T ) as

�t(t� T ) = 1 + a(t� T ) + b(t� T )2

which permits the temporal pattern of technical e�ciency e�ects to be convex or concave rather
than simply increasing or decreasing at a constant rate.

2.3.1 Implementation

The model is:

yit = xit� + �i(t) + vit (11)

�i(t) = e
��(t�T )ui (12)
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where the ui's are assumed to follow the non-negative truncated N(�; �
2) distribution whose density

is

fUi(ui) =
exp[� 1

2 (ui � �)
2=�2]

(2�)1=2�[1� �(��=�)] ; ui � 0

and where � is the cumulative distribution function of the standard normal random variable. The
vit's are assumed i.i.d. N(0; �

2
v) and are independent of the ui0s. Let yi be the (Ti � 1) vector of

production level of �rm i, and denote y = (y01; y
0
2; : : : ; y

0
N ). Then the density function of yi can be

easily derived from the density of �i and log-likelihood function L(�; �
2
v ; �

2; �; �; y;x) for the model
is given in Battese and Coelli (1992).
The minimum-mean-squared-error predictor of the e�ciency for country (�rm) i at time t is

E[exp(�uit)j�i] = f
1� �[�it��i � (��i )=��i ]

1� �(���i =��i )
g exp[��it��i +

1

2
�2it�

�2
i ]

and estimates of technical change due to innovation would be based on the coe�cient of a time trend

in the regression. The e�ect of innovation as distinct from catch-up is identi�ed by the nonlinear
time e�ects in the linear technical e�ciency term and thus the decomposition of TFP growth into a
technological change and e�ciency change component is quite natural with this estimator. Cuesta
(2000) generalized Battese and Coelli (1992) by allowing each country (�rm, etc.) to have its own
time path of technical ine�ciency. Extensions of the Battese and Coelli model that allow for technical
ine�ciency to be determined by a set of environmental factors that di�er from those that determine
the frontier itself are given in Battese and Coelli (1995). These were also addressed by Reifschneider
and Stevenson (1991) and by Good, Roeller, and Sickles (1995). Environmental factors that were
allowed to partially determine the level of ine�ciency and productivity were introduced in Cornwell
et al. (1990) and in Good, Nadiri, Roeller, and Sickles (1993).

2.4 The Park, Sickles, and Simar (1998, 2003, 2006) Models

Park, Sickles and Simar (PSS; 1998, 2000, 2005) considered linear stochastic frontier panel models in
which the distribution of country speci�c technical e�ciency e�ects is estimated nonparametrically.
They used methods developed in the statistics literature to estimate robust standard errors for
semi-nonparametric models based on adaptive estimation techniques for semiparametric e�cient
estimators. They �rst consider models in which various types of correlations exist between the
e�ects and the regressors (PSS, 1998). These minimax-type estimators ensure that the variances
of the estimators are the smallest within the set of variances based on the class of parametric sub-
models built up from the basic parametric assumptions of the model and the use of nonparametric
estimators (they utilize multi-variant kernel-based estimators) for the remaining portion of the model
speci�ed in terms of nuisance parameters. The nuisance parameters are the e�ects, the variances of
the parametric disturbance terms, and the bandwidth parameters. In PSS (2003) they extend the
basic model to consider serially correlated errors and in PSS (2006) consider dynamic panel data
models. In our discussion of this class of estimators we will only consider the most basic model set
up in PSS (1998). Details for the semiparametric e�cient panel data e�ciency model with serially
correlated errors or with a dynamic structure can be referred to PSS (2003, 2006). In the empirical
application to estimate world productivity growth we utilize three of the estimators discussed by
PSS. PSS1 is the estimator outlined above. PSS2W is the within version of the semiparametric
e�cient estimator with serially correlated errors to control for potential misspeci�ed dynamics while
PSS2G is the corresponding random e�ects version of the estimator (PSS, 2003).
The basic set up of the model is again the canonical linear panel data with cross-sectionally and

time varying e�ciency e�ects given by

yit = X
0
it� + �i(t) + vit

where vit's are the statistical noise that are independently and identically distributed with N(0; �
2),

�i(t) are bounded above (or below for the cost frontier model). The (�i(t); Xi)0s are assumed to be
independently and identically distributed with some joint density h(�; �).
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PSS (1998) discuss three di�erent cases for the dependency between the �rm e�ects, �, and
the other regressors, X: Their case 1 assumes no speci�c pattern of dependency between � and
X, which leads to a semiparametric e�cient estimator similar to the �xed e�ects estimator of
Schmidt and Sickles (1984) and its extension to time-varying e�ciency models of Cornwell, Schmidt
and Sickles (1990). Their case 2 assumes the �rm e�ects are correlated with a subset of other
explanatory variables, Z 2 X. Case 3 assumes that � a�ects Z only through its long run changes
(average movements) �Z. The semiparametric e�cient estimators of case 2 and 3 are analogous to
those proposed in Hausman and Taylor (1981), and extended to the stochastic frontier literature
in Cornwell et al. (1990). Derivations of the semiparametric e�ciency bound and of the adaptive
estimators for these many speci�cations are too detailed for this Chapter. The interested reader is
referred to the PSS papers referenced above for details. Once the parameters have been estimated
the method utilized in CSS (1990) can be used to estimate the technical e�ciencies and their
temporal changes. As with the CSS estimator, innovation change that is shared by all countries or
�rms and modeled using a time trend may be identi�ed separately from technical e�ciency based
on the orthogonality conditions imposed in cases 2 and 3. In case 1, which collapses to the CSS
within estimator, no such distinction can be made and, although TFP growth can be calculated, it
cannot be decomposed into innovation and catch-up.

2.5 The Latent Class Models of Greene, Kumbhakar, and Tsionas

In stochastic frontier models the production or cost functional relationship is usually set uniformly
for all countries or �rms, implying that the same technology is used as the benchmark and that
relative to that benchmark countries or �rms perform with di�erent levels of e�ciency. Although
other authors have questioned this assumption and have provided estimators that address this issue
in part, Orea and Kumbhakar (2004), Tsionas and Kumbhakar (2004), Greene (2005), were the �rst
to address it in such a general fashion. Their logic is clear and the arguments compelling and relate
to work on production heterogeneity by Mundlak (1961, 1978) and Griliches (1979), among others.
Countries that have access to the world technology, or �rms within a certain industry, have di�erent
sizes, innovation abilities, targeting groups etc., and may operate with di�erent technologies that
can take advantage of di�erent market niches. Imposing the same functional form in the model
may misidentify di�erences in the technology applied as technical ine�ciency when it fact it is
due to the appropriate use of the available technology to a di�erent (or constrained) set of market
conditions. We have discussed this issue in earlier sections. Such constrained conditions are
nonetheless suboptimal to the benchmark we establish and estimate and the technical e�ciency
component of TFP growth remains silent on the source of the technical ine�ciency. That said, it
is important to �nd a way to empirically parse the sources of variation into one may regard is or is
not technical ine�ciency.
A straightforward way to deal with this problem is to group countries or �rms into di�erent

categories by some obvious criteria and then analyze their TFP growth separately. We do this
below in our empirical analysis of world productivity growth. In general the grouping criteria can
be information about certain characteristics of countries (e.g., region, level of development, etc.,
or some combination of these and many other characteristics) or �rms (e.g., size, location etc.), or
can be based on some statistical clustering algorithm. Were these analyses to be done separately,
then it is clear that information represented by correlation between di�erent groups would not be
utilized. It may also be the case that the parameters of such models can not be identi�ed by distinct
categories and thus the suitability of the grouping criteria cannot be established empirically.
In the latent class stochastic frontier model there exist J unobserved classes in the panel data

giving rise to a speci�cation of the production (or distance) function as:

yit = x
0
it�j + �i(t)jj

The observed dependent variable is characterized by a conditional density function:

g(yitjxit; classj) = f(�j ; yit; xit):
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The functional form f(�) is the same over the entire sample, while the parameter vector �j is class-
speci�ed and contains all of the parameters of the class speci�c parameterization of the function. The
ine�ciency terms are latent class-speci�c and take the form of �i(t)jj and are assumed to distributed
as half normal. The likelihood coming from country or �rm i at time period t is

P (i; tjj) = f(yitjxit;�j ; �j ; �j) =
�(�j�i(t)jj)

�(0)

1

�j
�(
�i(t)jj
�j

)

where �i(t)jj = yit � x0it�j . Assuming the ine�ciency terms to be i.i.d. draws over time the
conditional likelihood for country or �rm i is

P (ijj) =
TY
t=1

P (i; tjj)

and the unconditional likelihood function is

P (i) =
JX
j=1

�(i; j)P (ijj) =
JX
j=1

�(i; j)
TY
t=1

P (i; tjj):

Here �(i; j) is a prior probability that establishes the distribution of �rms in di�erent classes. A
relatively simple and noninformative prior is the uniform where �(i; j) = �(j), for i = 1; : : : ; N:
In order to allow for heterogeneity in the mixing probabilities one can adopt the multinomial logit
form,

�(i; j) =
exp(�0i�j)PJ

m=1 exp(�
0
i�m)

; �J = 0:

The parametric log likelihood is

logL =

NX
i=1

logP (i)

Although the speci�cation outlined by Greene (2005) assumed that ine�ciency was independent
over time, the latent class model proposed by Orea and Kumbhakar (2004) allows technical e�-
ciency change over time by following a path given by an exponential function reminiscent of earlier
estimators by Battese and Coelli (1992) and Kumbhakar (1990)

�i(t)jj = it(�j) � �ijj = exp(z0it�j) � �ijj

where zit = (z1it; : : : ; zHit)
0 is a vector of time-varying variables and �j = (�1j ; : : : ; �Hj)

0 the asso-
ciated parameters. With such a changing path, the individual likelihood in their model is de�ned
directly over all time periods.

2.5.1 Implementation

The parametric log likelihood function is maximized to solve for parameter vector �j and proba-
bility �j simultaneously. Greene (2005) employed an Expectation-Maximization (EM) algorithm.
Alternatively, the model can also be estimated using Bayesian methods (see Tsionas and Greene,
2003). Explicit derivations can be found in Greene (2005).After classifying �rms into di�erent
groups, �rm-speci�c parameters can be estimated. After the parameters of the underlying produc-
tion or distance function are estimated and the time varying e�ects �i(t)jj are identifed for class j
the decomposition of TFP into an innovation change component and catch-up or technical e�ciency
component is complete.
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2.6 The Kneip, Sickles, and Song (2012) Model

Here we assume a linear semiparametric model panel data model that allows for an arbitrary pattern
of technical change �i(t) based on a factor model. The model takes the form

yit = �0(t) +

pX
j=1

�jxitj + �i(t) + vit:

Here the �i(t)'s are assumed to be smooth time-varying individual e�ects and identi�ability requires
that

P
i �i(t) = 0: �0(t) is some average function (or common factor) shared by all of the cross-

sectional units, such as countries or �rms. For purposes of developing the estimator of �i(t) we
eliminate the common factor. However, once we have estimated the �0js and the �i(t) terms we
can recover the common factor. For purposes of using this model as a vehicle for estimating TFP
growth, the common factor will identify the common innovation that changes over time, while the
�i(t) term will, after the suitable normalization developed above for the CSS counterpart, provide us
with relative e�ciency levels and thus their growth rates to allow for TFP growth to be decomposed
into its two constituent parts, innovation change and technical e�ciency change.
The centered form of the model is

yit � �yt =
pX
j=1

�j(xitj � �xtj) + �i(t) + vit � vi

where �yt =
1
n

P
i yit; �xtj =

1
n

P
i xitj and vi =

1
n

P
i vit. Here �i(t) is assumed to be a linear

combination of a �nite number of basis functions

�i(t) =

LX
r=1

�irgr(t)

This construction is more exible and realistic than parametric methods, which presume the
change of individual e�ects follow some speci�ed functional form, and the multiplicative e�ects
models of Lee and Schmidt (1993), Ahn, Lee, and Schmidt (2007), Bai (2009), and Bai and Ng
(2011). The model can be rewritten as

yit � �yt =
pX
j=1

�j(xitj � �xtj) +
LX
r=1

�irgr(t) + vit � vi

The authors introduce a suitable standardization to identify a speci�c basis they use in their
model which results in a set of gr's that are orthogonal and �ir's that are empirical uncorrelated.
Letting �1 = (�1(1); : : : ; �1(T ))

0; : : : ; �n = (�n(1); : : : ; �n(T ))
0. then the empirical covariance matrix

of �1; : : : ; �n is �n;T =
1
n

P
i �i�

0
i. Let �1 � �2 � � � � � �T be the eigenvalues of the matrix, and

1; 2; � � � ; T be the corresponding eigenvectors. Then the basis functions will be

gr(t) =
p
T � rt for all r = 1; : : : ; t = 1; : : : ; T (13)

�ir =
1

T

X
t

vi(t)gr(t) for all r = 1; : : : ; i = 1; : : : ; n (14)

r =
T

n

X
i

�2ir for all r = 1; : : : (15)

And for all l = 1; 2; : : :

TX
r=l+1

r =
X
i;t

(�i(t)�
lX

r=1

�irgr(t))
2

= min
~g1;:::;~gl

X
i

min
~#i1;:::;~#il

X
t

(�i(t)�
lX

r=1

#ir~gr(t))
2 (16)
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�i(t) �
Pl

r=1 �irgr(t) will be the best l-dimensional linear estimate, and the dimension L natu-
rally equals to rank(�n;T ). It can be shown that for selected values of L the normalizations imply
basis functions that correspond to the standard �xed e�ect estimator, the CSS (1990) estimator and
the Battese and Coelli (1992) estimator. Kneip, Sickles, and Song provide asymptotic results for
large N and large T:

2.6.1 Implementation

Since the �i's are assumed to be smooth trends, we can always �nd m-times continuously di�er-
entiable auxiliary functional variable �i's with domain [1; T ] that can interpolate the T di�erent
values of �i: Their method �rst estimates � and obtains the approximations �i by smoothing splines
(Eubank, 1988). This then determines the estimates of the basis functions ĝr through the empirical
covariance matrix �̂n;T , which is estimated by the (b�1; : : : ; b�n) = (�̂1; : : : ; �̂n). The corresponding
coe�cients of the basis functions will be obtained by least squares. In the last step, they update
the estimate of �i by

PL
r=1 �̂ir ĝr, which is proved to be more e�cient than the approximations �i:

Returning to the non-centered model, the general average function �0(t) is left unestimated. A non-
parametric method similar to step 1 can be applied to get an approximation. An alternative is to
assume �0(t) also lies in the space spanned by the set of basis functions, that is, �0(t) =

PL
r=1

��rgr(t).
The coe�cients can then be estimated by a similar minimization problem as step 3 with objective
function

P
t(�yt �

Pp
j=1 �̂j �xtj �

PL
r=1 #r ĝr(t))

2. The common factor �0(t) is interpreted as the
shared technological innovation component and the �i(t) the technical e�ciency component whose
growth constitute TFP growth.

2.7 Ahn, Lee and Schmidt (2013)

2.7.1 Model

Ahn, Lee and Schmidt (2013) generalize Ahn, Lee, and Schmidt (2007) and consider a panel data
model with multiple individual e�ects that also change over time:

yit = x
0
it� +

pX
j=1

�tj�ij + �it (17)

They focus on large N and �nite T asymptotics. They develop a consistent estimator for the slope
coe�cients � when there is correlation between individual e�ects and the regressors. To emphasize
this feature, the model interprets �tj as \macro shocks", and �ij as \random coe�cients" instead of
\factors" and \factor loadings", though the model itself resembles the factor models. This model
takes the form of the canonical model considered above by other researchers as it can be written as

yit = X
0
it� + �i(t) + vit

The model for individual i in matrix form is:

yi = Xi� + ui; ui = �i + �i = ��i + �i (18)

where yi = (yi1; : : : ; yiT )
0 is the dependent variable vector, Xi = (xi1; : : : ; xiT )

0 is the T �K matrix
of regressors, and � is the dimension-comformable coe�cients vector. The error term ui is composed
of the random noise �i and individual e�ects �i = ��i. � is a T � p (T > p) matrix containing p
macro shocks that vary over time. The random noise �it is usually assumed to be white noise to
assure consistent estimates of coe�cients in the case of large N and small T . This model relaxes this
assumption in that it allows any kind of autocorrelation of �i and only assumes that �i is uncorrelated
with regressors xit while � might be correlated with xit. Then for identi�cation, it is assumed there
exist instrument variables that are correlated with �ij but not with �it.
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2.7.2 Implementation

Due to the need for a particular rotation, it is not possible to separate the e�ects of � and �.
For identi�cation, � is normalized such that � = (�01;�Ip)0 with �1 a (T � p) � p matrix. With
instruments, the GMM method proposed in Ahn et al. (2001) is extended to incorporate multiple
time-varying e�ects and two methods are proposed to estimate the true number of individual e�ects.
They �rst obtain consistent estimators of � and � assuming the true number of e�ects p0 is known,
and then estimate p using their new test statistic. Detailed assumptions and discussion can be found
in the paper as well as how to extract the e�ciency and innovation change measures for productivity
measures.

2.8 Additional Panel Data Estimators of in the Stochastic Frontier Lit-
erature

Space limits the possibility of dealing with the many other approaches that have been proposed to es-
timate the panel stochastic frontier and provide a decomposition of TFP growth into innovation and
catch-up, or technical e�ciency. Addtional estimators that have been proposed for panel stochas-
tic frontiers and that are also quite appropriate for general panel data problems are the Bayesian
Stochastic Frontier Model (Liu, Sickles, and Tsionas, 2013), which builds on earlier work by Van
den Broeck, Koop, Osiewalski, and Steel (1994) and Tsionas (2006), the Bounded Ine�ciency Model
of Almanidis, Qian, and Sickles (2013) and related models of Lee (1996), Lee and Lee (2012), and
Orea and Steinbuks (2012), and the "True" Fixed E�ects Model of Greene (2005a,b). Kumbhakar,
Parmeter, and Tsionas (2013) have recently considered a semiparametric smooth coe�cient model
to estimate the TFP growth of certain production technologies that addresses the Skewness Problem
in classical SFA modeling considered by Feng, Horrace and Wu (2013), Almanidis and Sickles (2012)
and Almanidis et al. (2013). Recent work on spatial heterogeneity in SFA models has focused
on new interpretations and measurement of spillovers in substitution possibilities, returns to scale,
productivity change, and e�ciency change that is spatially dimensioned instead of simply varying
over time for particular �rms, industries or countries. The Spatial Stochastic Frontier shows great
promise and has been pursued in recent work by Glass, Kenjegalieva, and Sickles (2013 a,b) based
on the original contribution by Druska and Horrace (2004). Work on productivity measurement in
the presence of spatial heterogeneity has also recently been pursued Mastromarco and Shin (2013),
Entur and Musolesi (2013), and Demetrescu and Homm (2013). Such spatial methods are alterna-
tives to less structured approaches to address cross-sectional dependence in panel data models using
methods such as those developed by Pesaran (2007). Factor Models continue to be pursued in the
context of productivity modeling in panel data contexts and the space for such approaches is getting
quite dense as pointed out by Kneip and Sickles (2012).

3 Discussion on Combining Estimates

Combining estimates, or weighting estimates, provides a solution to modeling uncertainty. Sickles
(2005) pursued this strategy in his examination of semiparametric and nonparametric panel frontier
estimators. As discussed in detail by Burnham and Anderson (2002), given that a model is ap-
propriate, from a parametric approach we can use maximum likelihood methods or other methods,
depending on how the model is speci�ed, to estimate parameters in some optimal fashions. How-
ever, model selection uncertainty needs also be looked at more carefully. It should be considered
the same as sources from other types of uncertainties, such as uncertainty due to the limited set
of observation or model defect (Hjorth, 1994). Statistical inference based on "post-model-selection
estimators" (Leeb and Potscher, 2005) may lead to invalid analysis. Moreover, di�erent selecting
criteria may often result in contradictory ranking orders. Also, focusing on one model and dismissing
the results of alternative speci�cations may compromise the information content of the information
set. If observed data are conceptualized as random variables, then the sample variability introduces
uncertain inference from the particular data set (Burnham and Anderson, 2002). Moreover, due
to the non-experimental nature of the data, model speci�cation is very challenging to address in
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economics. Considering the complexity of economic and social structures, it is often unrealistic to
�nd a correct or true model that fully recovers the underlying Data Generating Process (DGP). In
other words, all the existing models are misspeci�ed in one way or another. Analogously, combining
di�erent misspeci�ed models is similar to constructing a diversi�ed portfolio. Just as the famous
quote by Box, "essentially, all models are wrong, but some are useful", it is important to carefully
design procedures that approximate potential underlying DGP's.

Typical model selection from some encompassing supermodel can be viewed as a special case
of weighting models which assigns the entire weight on one model and none on others. We do not
pursue this approach in our empirical work below. Instead we utilize Insights from economics and
from statistics to motivate several canonical methods to combine estimates and forecasts from a
variety of potentially misspeci�ed models. These insights are discussed in more depth in the cited
works. We utilize approaches to weighting outcomes from di�erent models and estimators using the
economic arguments of majority voting from the literature on social choice theory (see Moulin, 1980)
as well as the contest function of Tullock (1980); insights from statistics based on model averaging4

in order to assess the proper weights to construct the weighted average; and the literature on optimal
weights used in combining forecasts5. These studies provide the rationale for how we combine our
many results into summary measures of weighted means and variances.

4 Modeling World Economic Growth with the UNIDO Data

The proper measurement of nations' productivity growth is essential to understand current and fu-
ture trends in world income levels, growth in per/capita income, political stability, and international
trade ows. In measuring such important economic statistics it is also essential that a method that
is robust to misspeci�cation error is used. This section of the Chapter addresses the robusti�cation
of productivity growth measurement by utilizing the various economic theories explaining produc-
tivity growth as well as various estimators consistent with those particular theories. We utilize the
World Productivity Database from the UNIDO to analyze productivity during the period 1970-2000
and combine and consolidate the empirical �ndings from a number of the statistical treatments and
various economic models of economic growth and productivity that we have discussed above.
We address the heterogeneity problem in part by grouping countries according to their geograph-

ical and, for the OECD countries, their development characteristics as well as by the use of various
panel data techniques. We construct consensus estimates of world productivity TFP growth as well
as con�dence intervals and �nd that, compared to e�ciency catch-up, innovation plays a much more
important factor in generating TFP growth at this level of country aggregation.

4.1 UNIDO Data Description

The World Productivity Database (WPD) provides information on measures of the level and growth
of TFP based on 12 di�erent empirical methods across 112 countries over the period 1960-2000.
Those interested in the data and variable construction should visit the UNIDO website http://www.
unido.org/statistics.html. In our analysis we utilize two factor (capital and labor) aggregate
production function determining a country's level of aggregate output.

4.2 Empirical Findings

Comparisons of productivity changes are made among Asian, Latin American and OECD regions.
The following methods are used to estimate TFP change and its decomposition into technological and

4See, for example, Leeb and Potscher (2005), Buckland et al. (1997), Akaike (1973), Mallows (1973), Schwarz
(1978), Hansen (2007), Carroll et al. (2006), Burnham and Anderson (2002), Claeskens and Hjort (2008), Raftery et
al. (1997), Hoeting et al. (1999), and Koop et al. (2007), Timmermann (2006).

5Se, for example, Newbold and Harvey (2002), Bates and Granger (1969), Diebold and Lopez (1996), Lahiri, et al.
(2011), Clemen (1989), Timmermann (2006), Lahiri and Shang (2010), Zarnowitz and Lambros (1987), Lahiri and
Sheng (2010), Lahiri, et al. (2010), Davies and Lahiri (1995), and Lahiri et al. (1988).
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technical e�ciency change when possible: CSSG, EIV, BC, PSS1, PSS2W, PSS2G, two �xed-e�ect
estimators and two random-e�ect estimators.
There are 10 di�erent methods to estimate TFP growth and 6 di�erent methods to estimate the

decomposition of TFP growth into innovation and technical e�ciency change. Data limitations
forced us to use only three of the four possible capital measures, K06, Ke�, and Ks along with the
two labor measures, LF and EMP as well as data only from 1970 to 2000. The results are based on
60 di�erent sets of estimates. The panel estimators are used to estimate productivity growth and its
decomposition methodologies for countries in Asia (13 countries), Latin America (12 countries) and
the OECD (24 countries). The speci�c countries in Asia are: Bangladesh, China, Hong Kong (SAR
of China), India, Indonesia, Israel, Malaysia, Pakistan, Philippines, Singapore, Sri Lanka, Taiwan
(Province of China), and Thailand. The countries in Latin America are: Argentina, Brazil,
Chile, Colombia, Ecuador, Mexico, Guatemala, Jamaica, Panama, Peru, Trinidad and Tobago,
and Venezuela. Finally, the countries in the OECD are: Australia, Austria, Belgium, Canada,
Denmark, Finland, France, Greece, Iceland, Ireland, Italy, Japan, Republic of Korea, Luxembourg,
Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, UK, and USA.
Our approach considers a Cobb-Douglas production function with two explanatory variables:

Capital and Labor. The various measures we adopt to measure the two inputs are largely based on
data limitations. K06 and K013 utilize a perpetual inventory method to measure capital services
and di�er based on di�ering but constant depreciation rates (6% and 13.3%, respectively, which
correspond to about 12 and 6 year asset lives). A di�erent way of measuring capital focuses on the
pro�le of capital productivity and utilizes a time-varying depreciation rate. As the asset ages, its
capital declines at an increasing rate. This leads to Ke�. Labor input measurement involves two
kinds of labor utilization rates for which labor force (LF) can be adjusted, variations in numbers
employed and in hours worked. Again, for reasons of data limitations we use the second adjustment
and also consider employment (EMP). Thus each region has 6 combinations of inputs. In addition
to the 6 we have discussed above, we also include four simple panel data estimators (FIX1 is a
�xed e�ect model including t as explanatory variable, FIX2 is a �xed e�ect model with t and
t2 as explanatory variables. RND1 is a random e�ect model including t as explanatory variable,
RND2 is a random e�ect model with t and t2 as explanatory variables). The estimation results
(Table 1) are too numerous to include in this Chapter and are available on the Sickles website at
http://www.ruf.rice.edu/~rsickles/ as are summary results in Figures 1-8 referred to below.
We decompose TFP into technical e�ciency change and innovation or technical change. Techni-

cal e�ciency for each country is de�ned as the radial distance from the (possibly shifting) production
frontier in a given period (Debreu, 1951; Farrell, 1957). The estimation methods for this component
have been included in all standard stochastic frontier literature. Results are presented in Figure 1
for each of the three regions. We summarize the outcomes of technical e�ciency by three di�erent
averages. The �rst two methods are simple average and geometric average. Since countries have
di�erent GDP sizes, instead of simply averaging in each period, it is natural to weigh the results by
each country's GDP. The traditional �xed e�ect model and the random e�ect model do not esti-
mate technical e�ciency, therefore, there are 6 models for technical e�ciency change in each region.
From the �gures, it is apparent that Asian countries' technical e�ciency improvements have been
on a decreasing trend since the late 1970s. Latin American countries' technical e�ciency changes
have been very small in magnitude. OECD countries' technical e�ciency improvements increased
until the mid to late 1980s then started to decline. In the Asian countries, GDP weighted averages
are somewhat larger than simple averages, which indicates that larger GDP countries (particularly
China) have more technical improvements than smaller GDP countries. For OECD countries we
have the opposite observation, which indicates smaller GDP countries on average have more technical
e�ciency improvements than larger GDP countries (such as the U.S.).
Technical innovation change is measured as the shift of the frontier between periods, or the time

derivative of each model. In our study, we assume a constant rate of technological innovation, thus
innovational progress is the coe�cient of time variable. We have 60 estimates for each region as
presented in Figure 2. Asian countries have the largest innovation changes among all regions on
average, at around 1.56% per year. Latin American countries display very small magnitudes of
innovation change. On average, the region has 0.3% increase of progress per year. OECD countries'
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average innovation improvement is about 0.73% per year.
TFP change is the sum of technical e�ciency change and technical innovation change. As seen

in Figure 3, Asian countries have the highest TFP improvements through the years, mainly because
the innovation progress outperforms the declining trend of technical e�ciency. Latin American
countries have almost nonexistent improvements in productivity in most years. They even have
negative TFP growth rates in a few years at the beginning and end of the sample period. OECD
countries' TFP performances are between those of Asia and Latin America, although the trend
has been decreasing throughout the periods. The overall TFP growth between 1972 and 2000 is
61.2% for Asian countries, 24.7% for OECD countries and 7.46% for Latin American countries. We
also used three averaging approaches to aggregate three regions to demonstrate the global trends of
TFP growth, which are shown in Figure 4. These results appear to be comparable to other recent
international studies based on index number approaches (Badunenko, Henderson, and Russell, 2013)
Next we report the Solow Residual (hereinafter SR). The SR results based on GDP weighted

growth rates across all the methods and combinations are presented in Figure 6. The average of SR is
0.78% for Asian countries, -0.07% for Latin American countries and 0.37% for OECD countries. One
of the major shortcomings of SR and growth accounting in general as pointed out by Chen (1997)
is that the SR cannot di�erentiate disembodied technological change (similar to our de�nition of
innovational progress) from embodied technological change (similar to our de�nition of e�ciency
change). Failure to separate di�erent e�ects in addition to the input measurement problems makes
TFP estimates using growth accounting somewhat di�cult to interpret and decompose. We can
decompose TFP into e�ciency catch-up and innovation and provide a solution to this problem.
The last results we wish to discuss are the combined estimates (Figure 8). As discussed above,

the motivation of employing a model averaging exercise is to obtain some consensus results based
on all the competing models and data at hand. The simplest averaging is to take the arithmetic
mean of all estimates, which implicitly assumes the equal importance of all models. The annual
changes of technical e�ciency, technical innovation and TFP are -0.07%, 1.63% and 1.56% for
Asian countries, 0.01%, 0.24% and 0.25% for Latin American countries, and -0.05%, 0.84% and
0.79% for OECD countries. The most crucial component of all "combining estimates methods" such
as model averaging is how the weights are assigned. Besides simple averaging, we use four statistical
criteria to assign weights. First, we simply assign weights according to R-square of each model. Since
R-squares in our estimations are all close to each other, weighted results are very close to simple
averaging results: technical e�ciency, technical innovation and TFP changes are -0.07%, 1.62% and
1.55% for Asian countries, 0.02%, 0.22% and 0.23% for Latin American countries, and -0.05%, 0.84%
and 0.79% for OECD countries. The second way is to set the weights as reciprocals of residual sum
of squares (hereinafter RSS). RSS is a simple measure of how much the data are not explained by
a particular model. Annual technical e�ciency, technical innovation and TFP changes are -0.04%,
1.52% and 1.47% for Asia countries, 0.01%, 0.19% and 0.20% for Latin American countries, and
-0.04%, 0.75% and 0.71% for OECD countries. The third method is to choose weights according to
AIC. Since all the models in our study use the same variables on the same data set, we would have
a simple expression of AIC, which only depends on RSS. So the results of the third method should
be close to the second one. The annual technical e�ciency, technical innovation and TFP changes
are -0.08%, 1.59% and 1.52% for Asian countries, 0.02%, 0.18% and 0.21% for Latin American
countries, and -0.06%, 0.81% and 0.75% for OECD countries. The last method is to use BIC as
weights. BIC depends not only on RSS, but also on the estimated variance of the error term. The
annual technical e�ciency, technical innovation and TFP changes are -0.12%, 1.70% and 1.58% for
Asian Countries, 0.01%, 0.20% and 0.20% for Latin American Countries, and -0.15%, 0.88% and
0.73% for OECD countries. As shown in the Figure 8, combined estimates of all criteria are rather
similar. All of the methods we utilize tell us that the during the 29 years span, the improvements
of Asian countries and OECD countries' technical e�ciencies are deteriorating. Even though Latin
America countries have improved technical e�ciency (very small in magnitude), because of its slower
innovational progress, their TFP improvement has lagged behind not only Asian countries, but also
OECD countries. For inference purpose, the variances of combined estimates can also be calculated
(Burnham et al., 2002; Huang and Lai, 2012). Our results indicate signi�cant positive TFP growth
in Asian and the OECD while TFP growth in Latin America is not signi�cantly di�erent than zero.
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5 Conclusions and Suggestions for Future Research

In this Chapter, we have focused on the role that panel data econometrics plays in formulating
and estimating the most important contributors to productivity growth: innovation and catch-up.
We have explained di�erent theories on economic growth and productivity measurement and the
econometric speci�cations they imply. Various index number and regression-based approaches to
measuring productivity growth and its innovation and catch-up components have been discussed
in detail. We have also discussed methods that can be used to combine results from the many
di�erent perspectives on how economic growth is modelled and estimated, focusing on methods used
in model averaging and in the combination of forecasts. As this Chapter is to provide the reader
with an applied perspective we have utilized these various panel data and model averaging methods
in an analysis of world productivity growth using the World Productivity Database gathered by the
United Nations Industrial Development Organization (UNIDO). We study Asian, Latin American
and OECD countries between 1970 and 2000 and �nd that Asian countries had the fastest TFP
growth among the 3 regions, due largely to relatively rapid technical innovation. OECD countries
made more moderate gains in TFP growth, again due largely to technical innovation as opposed to
catch-up. Latin American countries overall had the slowest growth rate in TFP, although they had
consistently managed positive improvements in both technical and technological e�ciencies.
There are a number of research topics that we were not able to cover in this Chapter. Allocative

distortions as opposed to the radial technical ine�ciency we have posited in our panel studies was
not addressed, nor was the nascent literature on developing coverage intervals for relative e�ciency
levels and rankings of countries or �rms. The models are of course linear and thus structural
dynamic models that incorporate ine�ciency as well as models that address, at a �rm or industry
level, the impact that deviations from neoclassical assumptions of perfectly coordinated allocations
with no technical (or cost) ine�ciency, may have on �rm or industry level productivity has not been
examined. These are areas for future research and we encourage those interested in the intersection of
more traditional productivity research, new productivity research that addresses imperfect decision
making, and panel methods to pursue these topics.
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