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Abstract

Drawing on a recent development on the interpretation of spatial econometric

models we extend two classic characteristics of production (returns to scale and

diminishing marginal productivity of factor inputs) to the spatial case. In the con-

text of a spatial translog production function we de�ne own (i.e. direct), spillover

(i.e. indirect) and total (i.e. direct plus indirect) returns to scale. The spatial

production function gives rise to direct, indirect and total productions functions so

we set out empirical checks to establish if these functions are concave. The ideas

of spatial returns to scale and spatial concavity/convexity can easily be applied to

other technical relationships (e.g. cost and distance functions) and other functional

forms (e.g. Cobb-Douglas). We apply these ideas to aggregate production of Euro-

pean countries and �nd that the 2004 EU enlargement led to a sharp fall in direct,

indirect and total returns scale across the EU.

Keywords: Spatial Returns to Scale; Spatial Concavity; Spatial Durbin Model.

JEL Classi�cation: C23; D24

�School of Business and Economics, Loughborough University, Leics, UK, LE11 3TU. Email:
A.J.Glass@lboro.ac.uk.

ySchool of Business and Economics, Loughborough University, Leics, UK, LE11 3TU. Email:
K.A.Kenjegalieva@lboro.ac.uk.

zCorresponding author
xDepartment of Economics, Rice University, Houston, U.S, and School of Business and Economics,

Loughborough University, Leics, UK, LE11 3TU. Email: rsickles@rice.edu

1



1 Introduction

In this paper we introduce the idea of spatial returns to scale by drawing on a recent

development in applied spatial econometrics. LeSage and Pace (2009) demonstrate that

the parameters from a model which contain the spatial autoregressive variable cannot

be interpreted as marginal e¤ects. To address this problem they propose a method to

calculate direct, indirect and total marginal e¤ects.1 Using this method we propose direct,

indirect and total returns to scale in the context of a production function. Direct, indirect

and total returns to scale can easily be calculated for other technical relationships (cost,

standard and alternative pro�t, revenue, and input and output distance functions) so

there considerable scope for wider application of the spatial returns to scale which we

propose here. Direct returns to scale has the same interpretation as own returns to scale

from a non-spatial production function. Indirect returns refers to the rate of increase in

a unit�s output following an increase in the factor inputs of neighbouring units. Total

returns to scale is the rate of increase in a unit�s output following an increase in its

own factor inputs and its neighbours�factor inputs. Having estimated spatial production

functions for European countries over the period 1990�2011 using various spatial weights
matrices, we calculate direct, indirect and total returns to scale.

The closest relatives to this paper fall into two categories: (i) empirical applications

of New Economic Geography (NEG) and (ii) empirical growth models estimated using

spatial econometric techniques.2 There are a wide range of empirical applications of NEG

to, for example, countries (Redding and Venables, 2004), Brazilian states (Fally et al.,

2010), Chinese prefectures (Hering and Poncet, 2010), U.S. counties (Hanson, 2005) and

NUTS-2 European regions (Head and Mayer, 2006; Baltagi et al., 2013). For a sample of

local areas in Great Britain, Fingleton (2006) combines spatial econometric methods and

an arti�cial nesting model to test unnested NEG and urban economic theories against

one another. The urban economic theory is based on the bene�ts from good connections

with producers in the service sector, where these linkages are better in urban areas where

employment density is higher. Interestingly, Fingleton �nds that the data supports urban

economic theory over NEG. In essence NEG is a set of price and wage equations, where

the vast majority of applied NEG studies estimate the wage equation because of its em-

pirical tractability. In the wage equation the e¤ect of geography is in terms of the e¤ect

of a region�s market potential. Regions have di¤erent levels of market potential because

of di¤erences in access costs to its own and other regional markets (i.e. di¤erences in

1The direct elasticity is interpreted in the same way as an own elasticity from a non-spatial model
although the direct elasticity takes into account feedback e¤ects (i.e. e¤ects which pass through �rst
order and higher order neighbors via the spatial multiplier matrix and back to the unit which initiated the
change). An indirect elasticity is the change in the dependent variable for one particular unit following
a change in an explanatory variable in all the other units. The total elasticity is the sum of the direct
and indirect elasticities.

2See Fujita et al. (1997) for a textbook treatment of the theory of NEG.
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transport costs), di¤erences in the size of markets (i.e. di¤erences in incomes between

regions) and di¤erences in competition within a region resulting in price di¤erences be-

tween regions. In this paper, however, the e¤ect of geography is explicitly related to

neighbours�factor inputs.

The growth models which have been estimated using spatial econometric techniques

are the: (i) neoclassical growth model (Solow, 1956) and various extensions, and (ii)

Verdoorn�s model.3 A small number of studies use spatial econometric techniques in

conjunction with an arti�cial nesting model to test the non-nested standard neoclassical

growth model and NEG against each other (Fingleton, 2008; Fingleton and Fischer,

2010). In both studies the neoclassical growth model is augmented with a spatial error

term. On the other hand, other studies have developed the neoclassical growth model

by introducing spatial knowledge spillovers to the Solow residual (López-Bazo et al.,

2004; Egger and Pfa¤ermayr, 2006; Ertur and Koch, 2007; Pfa¤ermayr, 2009). As a

result, familiar spatial econometric models such as the spatial Durbin model, which has

a spatial autoregressive variable and spatial lags of the independent variables, are linear

approximations of the reduced form TFP and convergence equations.

McCombie and Fingleton (1998), Fingleton and López-Bazo (2006), and Pfa¤ermayr

(2009) observe strong empirical support for Verdoorn�s model using data for NUTS-2

European regions. Fingleton (2001) also notes that Verdoorn�s model is better suited

to explaining regional growth patterns than the neoclassical growth model because it

is consistent with some endogenous growth models and with some theories based on

agglomeration economies from the urban economics literature. However, as Pfa¤ermayr

(2009) notes it is not possible to construct an arti�cial nesting model to test the non-

nested Verdoorn and neoclassical growth models against one another.4 Notwithstanding

the important contributions of the above spatial empirical growth models, the authors

do not calculate direct, indirect and total marginal e¤ects. The direct, indirect and total

marginal e¤ects associated with the spatial error term are not particularly informative as

they relate to the disturbance. Here, however, the spatial autoregressive variable forms

part of the �tted models so we can clearly interpret the spillovers which are at work

because the direct, indirect and total marginal e¤ects relate to the independent variables.

The direct, indirect and total returns to scale which we propose here can be calculated

using any functional form (Cobb-Douglas, Fourier �exible, translog, Generalized McFad-

den, Generalized Leontief, etc.). In an empirical analysis where the focus is on direct,

indirect and total returns to scale it is more illuminating to calculate these returns from

a function with a �exible form. Accordingly, in the application to aggregate production

of European countries rather than estimate a spatial Cobb-Douglas production function

3Verdoorn�s law postulates that output growth in a region will lead to an increase in the regions�s
labour productivity because of increasing returns to scale.

4The reason is because independent variables in the arti�cial nesting model would include log di¤er-
ences of income and population, which together would make up the dependent variable.
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which underpins the above spatial empirical growth models and where returns to scale

are the same at every point in the sample, we estimate a spatial translog production

function which allows returns to scale to vary over the sample.

The direct, indirect and total marginal e¤ects collectively constitute three translog

production functions. An issue which is related to direct, indirect and total returns to

scale over the sample is the curvature of the associated translog production functions.

This is an important issue because concavity of a non-spatial or direct translog production

function would satisfy the curvature property and would thereby indicate diminishing

marginal productivity of a unit�s own factor inputs. We conduct empirical checks of the

curvature of the �tted direct translog functions by adapting the approach which is used

to check the curvature of a non-spatial translog function. Indirect and total translog

functions have no such curvature properties but we conduct an empirical check of the

curvature of these functions in a similar way. The same approach can be used to conduct

an empirical check of the curvature of the direct, indirect and total translog functions for

other technical relationships (cost, standard and alternative pro�t, etc.).

In the application to aggregate production of European countries we estimate spatial

autoregressive and spatial Durbin translog production functions using sixteen inverse dis-

tance spatial weights matrices. Notwithstanding that there is some merit in the spatial

autoregressive models, we prefer the spatial Durbin models. Our reasons for this prefer-

ence are explained at various junctures in the remainder of the paper. In the �rst spatial

weights matrix there is spatial interaction between all the countries in the sample. The

other �fteen spatial weights matrices represent di¤erent subsets of the spatial interaction

in the �rst matrix, namely interaction with a certain number of: (i) near neighbours,

(ii) big import partners and (iii) big export partners. We are therefore able to examine

whether the spatial returns to scale and spatial curvature change when the spatial inter-

action is limited to di¤erent subsets of countries in the sample vis-à-vis when there is

spatial interaction between all the countries in the sample. To give an insight into the key

empirical �ndings, we �nd that the 2004 EU enlargement led to a marked fall in direct,

indirect and total returns to scale across the EU. It is evident from post 2004 returns to

scale for the EU that the marked fall in 2004 had a persistent e¤ect.

The remainder of this paper is organised as follows. In section 2 we set out the two

speci�cations of the spatial translog production function which we estimate and then

we explain the approach to calculate direct, indirect and total returns to scale. Section

3 discusses how we conduct empirical checks of the monotonicity and curvature of the

�tted direct, indirect and total translog production functions. Section 4 is dedicated to

the application where, among other things, we test for constant direct, indirect and total

returns to scale. Section 5 concludes.

4



2 Spatial Translog Production Functions and Spatial

Returns to Scale

Our starting point is the spatial Durbin Cobb-Douglas production which Ertur and Koch

(2007) estimate. Moreover, LeSage and Pace (2009) make a compelling econometric

case for the spatial Durbin model.5 There are two strands to the econometric case which

LeSage and Pace make in support of the spatial Durbin model. The �rst is based on their

belief that the principal focus of spatial modelling should be the analysis of substantive

global spillovers which relate to the spatial autoregressive term and not the global spillover

of shocks which emanate from the spatial error term. The second strand concerns the

unbiased parameters which the spatial Durbin model yields if the true data generating

process is, among others, the spatial error model or the spatial autoregressive model.

The spatial Durbin translog production function for panel data which we estimate is

as follows:

ln yit = �+  t + �i + �1t+ �2t
2 + TL (xit) + zit#+

NX
j=1

wijTL (xjt) +

NX
j=1

wijzjt� + �
NX
j=1

wij ln yjt + "it; (1)

where N is a cross-section of units; yit is the output of the ith unit at time t;  t is a time

period e¤ect; �i is a �xed e¤ect; t is a time trend; xit is a (1�M) vector of inputs; TL(xit)
= 

0
lnxit+

1
2
lnx

0
it� ln xit represents the technology as the translog approximation of the

log of the production function, where 
0
is a vector of parameters and � is a matrix

of parameters; � is the spatial autoregressive parameter; wij is a known non-negative

element of the (N �N) spatial weights matrix, W ; z is a vector of variables and # and �

are vectors of parameters, where the z variables, the spatial lags of the z variables and the

spatial autoregressive term shift the production technology; "it is an i.i.d. disturbance for

i and t with zero mean and variance �2. W captures the spatial arrangement of the cross-

sectional units and also the strength of the spatial interaction between the cross-sectional

units. As is standard the diagonal elements of W are set to zero. W must be speci�ed

5Their case for the spatial Durbin model is at odds with the view that spatial model selection is a
matter for LM test procedures. LeSage and Pace (2009) make the case for the spatial Durbin model be-
cause of concerns about the robustness of these tests to misspeci�cation of the spatial dependence. Early
LM tests for spatial error autocorrelation (Burridge, 1980) and spatial autoregression (Anselin, 1988) ig-
nore the possibility of spatial autoregression and spatial error autocorrelation, respectively. Anselin et al.
(1996) develop cross-sectional LM tests for spatial error autocorrelation and spatial autoregression where
both tests are robust to misspeci�cation of local spatial dependence but not global spatial dependence.
Furthermore, there is a debate about whether to adopt a speci�c-to-general testing procedure (Florax,
et al., 2003), a general-to-speci�c approach (Mur and Angulo, 2009) or a mix of the two (Elhorst, 2012).
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prior to estimation and is usually speci�ed according to some measure of geographical or

economic proximity.

In Eq. 1 we omit t and t2 from the translog function to avoid perfect collinearity

with the corresponding spatial lags but include t and t2 outside the translog function to

take account of technological change. Eq. 1 is strictly therefore a partial spatial Durbin

model and the technological change in Eq. 1 is Hicks-neutral because it does not a¤ect the

balance of factor inputs in the production function. Hicks-neutral technological change,

however, restricts the factor substitution possibilities. Alternatively, we could relax the

assumption of Hicks-neutral technological change in Eq. 1 by retaining
PN

j=1wijTL (xjt)

and replacing TL (xit) with TL(xit; t) = 
0
lnxi +

1
2
lnx

0
i� ln xi + �1ti + �2t

2
i + �

0
lnxiti ,

where �
0
is a vector of parameters. This would, however, introduce a theoretical incon-

sistency between the functional forms of the non-spatial translog and the local spatial

translog. With the spatial autoregressive translog speci�cation, however, technological

change need not be Hicks-neutral. This is evident because the spatial autoregressive

translog production function for panel data which we estimate is:

ln yit = �+  t + �i + TL (xit; t) + zit#+ �
NX
j=1

wij ln yjt + "it: (2)

We do not augment Eq. 2 with a spatial error term because we use maximum likelihood

(ML) and when ML is used to estimate such a model where the spatial error and spatial

autoregressive terms are computed using the same spatial weights matrix, identi�cation

of the spatial parameters tends to be weak (Pfa¤ermayr, 2009, page 67). For the same

reason we do not augment Eq. 1 with a spatial error term to obtain the Manski model

(Elhorst, 2010, page 14).6

We use ML rather than GMM or Bayesian MCMC to estimate the spatial models to

maintain commonality with the classic Battese and Coelli (1988; 1992; 1995) stochastic

frontier models. This is because a natural area for further work is to develop spatial

autoregressive and spatial Durbin stochastic frontier models. We ensure that � lies in its

parameter space, account for the endogeneity of the spatial autoregressive variable and

the fact that "t is not observed by including the scaled logged determinant of the Jacobian

of the transformation from "t to ln yt in the log-likelihood functions associated with Eqs.

1 and 2 (i.e. include T ln jI � �W j in the log-likelihood functions, where I is the (N �N)

identity matrix). Moreover, to circumvent the incidental parameter problem associated

with the �xed e¤ects Eqs. 1 and 2 are estimated by demeaning in the space dimension

which eliminates the �xed e¤ects and the intercept from the �tted models. For details

6With regards to Eqs. 1 and 2 we make the following standard assumptions. (i) The parameter space
of � is taken to be (1=rmin; 1), where rmin denotes the most negative real characteristic root of W and
since we use a row-normalised W , 1 is the largest real characteristic root of W . (ii) We assume that
W and (I � �W ) are bounded uniformly in absolute value. As a result of this assumption the spatial
correlation has �fading�memory (e.g. Kelejian and Prucha, 1998).
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on ML estimation of Eq. 2 by demeaning in space see Elhorst (2009), where Eq. 1 is

estimated in similar fashion. Lee and Yu (2010) have since shown that demeaning in space

to estimate a spatial model with �xed e¤ects which contains the spatial autoregressive

variable results in a biased estimate of �2 if N is large and T is �xed, which we denote

�2B, where the bias is of the type identi�ed in Neyman and Scott (1948). Following Lee

and Yu (2010) and Elhorst (2012) we correct for this bias by replacing �2B with the bias

corrected estimate of �2, �2BC = T�2=(T � 1), which changes the standard errors and t
values.7

LeSage and Pace (2009) demonstrate that for models such as Eqs 1 and 2 the co-

e¢ cients on the explanatory variables cannot be interpreted as elasticities because the

marginal e¤ect of an explanatory variable is a function of the spatial autoregressive vari-

able. They therefore suggest the following approach to calculate direct, indirect and total

marginal e¤ects. We can rewrite Eqs. 1 and 2 as follows, respectively, where the subscript

i�s are dropped to denote successive stacking of cross sections.

ln yt = (I � �W )�1��+ (I � �W )�1 t�+ (I � �W )�1�+

(I � �W )�1
�
�1t+ �2t

2
�
+ (I � �W )�1 (�t� +W�t�) +

(I � �W )�1 (Zt#+WZt�) + (I � �W )�1"t; (3)

ln yt = (I � �W )�1��+ (I � �W )�1 t�+ (I � �W )�1�+

(I � �W )�1
t� + (I � �W )�1Zt#+ (I � �W )�1"t; (4)

where � is an (N � 1) vector of ones; � is an (N � 1) vector of �xed e¤ects; �t and 
t
are (N � L) and (N �K) matrices of stacked observations for TL (xt) and TL (xt; t),

where L < K; � and � are vectors of translog parameters for TL (xt) and TL (xt; t); �

is a vector of local spatial translog parameters for W � TL (xt); and Zt is a matrix of

stacked observations for zit.

We set out the approach to calculate the direct, indirect and total marginal e¤ects for

the lth component of the translog function in Eq. 3. Using mean adjusted data all the

�tted parameters from a local spatial translog function (i.e. Eq. 3 without the spatial

autoregressive variable) are elasticities at the sample mean because at the sample mean

7Lee and Yu (2010) also show that estimating such spatial models when N and T are both large by
demeaning in space and time leads to biased estimates of all parameters, which they propose a correction
for. We do not, however, eliminate the time period e¤ects by demeaning in time and regard them as a
�nite number of additional regressors. This is because in the application we regard T as �xed relative
to the size of N so the time period dummies are not a big consumer of degrees of freedom, and if we
demeaned in time we would eliminate t and t2 from Eq. 1 and Eq. 2.
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the own and local spatial quadratic and interaction terms are zero. Extending this to Eq.

3, the �tted � and � parameters can therefore be used to directly calculate direct, indirect

and total elasticities for the lth component of the translog function. The matrix of direct

and indirect elasticities for each unit for the lth component of the translog function is:

(I � �W )�1

266664
�l w12�l : w1N�l

w21�l �l : w2N�l

: : : :

wN1�l wN2�l : �l

377775 : (5)

Since Eq. 5 yields di¤erent direct and indirect elasticities for each unit to facilitate

interpretation LeSage and Pace (2009) suggest reporting a mean direct elasticity (average

of the diagonal elements of Eq. 5) and a mean indirect elasticity (average row sum of the

non-diagonal elements of Eq. 5 in the empirical section of this paper). The mean total

elasticity is the sum of the mean direct and mean indirect elasticities.

The direct, indirect and total marginal e¤ects for variables in Eq. 1 for which there

is no local spatial variable and the corresponding marginal e¤ects for all variables in Eq.

2 are calculated using Eq. 5 but with the o¤-diagonal elements in the matrix on the

right-hand side of Eq. 5 set equal to zero by construction. Consequently, the ratio of

the indirect and direct marginal e¤ects is the same for all the variables in the model for

which there is no local spatial variable. This is widely considered to be unrealistic and is

a key reason why the spatial Durbin model is favoured in the literature.

To compute t statistics for the mean direct, mean indirect and mean total elasticities,

LeSage and Pace (2009) propose Bayesian MCMC simulation of the distributions of the

elasticities. 1; 000 parameter combinations are drawn from the variance matrix, where

each combination consists of random values from a normal distribution with mean zero

and standard deviation one. Mean direct, mean indirect and mean total elasticities are

calculated for each parameter combination. The mean direct, mean indirect and mean

total elasticities which we report are the averages over the 1; 000 draws. Following Elhorst

(2012) the associated t statistics are obtained by dividing the reported mean direct, mean

indirect and mean total elasticities by the standard deviation across the corresponding

1; 000 mean elasticities.

Furthermore, for any of the 15 spatial weights matrices with a cut-o¤, we expand the

spatial multiplier matrix (I � �W )�1 (see Eq. 6), substitute the expansion into Eq. 5 and

conduct the above Bayesian MCMC experiment up to a pre-speci�ed order, R (indexed

r = 0; 1; 2; :::R). This yields partitioned mean direct, mean indirect and mean total

elasticities across space (i.e. mean no neighbour e¤ects (I), mean �rst order neighbour

e¤ects (�W ), mean second order neighbor e¤ects (�2W 2), etc.).8 Following Autant-

8Partitioning is only possible with a sparsely speci�ed W (e.g. a contiguity matrix) because such
matrices give rise to higher order neighbour e¤ects (i.e. second order neighbour e¤ects, third order
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Bernard and LeSage (2009), rather than t statistics we report con�dence intervals for the

partitioned elasticities.9

(I � �W )�1 = I + �W + �2W 2 + �3W 3 + ::: (6)

The usual own returns to scale from a non-spatial model and direct returns to scale

from the spatial models measure the percentage change in the ith unit�s output due to a

one percent increase in the ith unit�s inputs. Unlike own returns to scale, however, direct

returns to scale also include feedback e¤ects i.e. where the ith unit�s inputs change which

via the spatial multiplier matrix a¤ects the output of �rst order neighbours, second order

neighbours, etc., where some of this e¤ect on neighbours�outputs rebounds and a¤ects

the output of the ith unit. Indirect returns to scale refers to the percentage change in the

ith unit�s output due to a one percent increase in the inputs of all the other units in the

sample. Total returns to scale is the sum of direct and indirect returns to scale and is the

percentage change in the ith unit�s output due to a one percent increase in the inputs of

all N units. Since in Eqs. 1 and 2 x is a (1�M) vector of inputs indexed m = 1; 2; :::M ,

direct, indirect and total returns to scale (RTSDiri , RTSIndi and RTSToti ) at the sample

mean can be calculated as follows.

MX
m=1

exDirm;i +
MX
m=1

exIndm;i =
MX
m=1

exTotm;i ; (7)

where exDirm;i , ex
Ind
m;i and ex

Tot
m;i are direct, indirect and total elasticities for the mth input,

and RTSDiri =
PM

m=1 ex
Dir
m;i , RTS

Ind
i =

PM
m=1 ex

Ind
m;i and RTS

Tot
i =

PM
m=1 ex

Tot
m;i .

We observe decreasing direct and indirect returns to scale ifRTSDiri < 1 andRTSIndi <

1, constant direct and indirect returns to scale if RTSDiri = 1 and RTSIndi = 1, and in-

creasing direct and indirect returns to scale ifRTSDiri > 1 andRTSIndi > 1. SinceRTSToti

is the sum of RTSDiri and RTSIndi , we observe decreasing total returns if RTSToti < 2,

constant total returns if RTSToti = 2 and increasing total returns if RTSToti > 2. We

test the null of constant direct, indirect and total returns for the sample average country

using one-sided t tests. It should also be noted that the partitioned elasticities cannot be

used to calculate partitioned returns to scale. This is because the partitioned elasticities

relate to unpartitioned output.

neighbour e¤ects, etc.). With a densely speci�edW , however, such as an inverse distance matrix with no
cut-o¤ (i.e. inverse distance between all units in the sample) there are no higher order neighbour e¤ects.
This is because all units are neighbours of one another so there are only �rst order neighbour e¤ects.

9In the published version of the Autant-Bernard and LeSage (2009) working paper (see Autant-
Bernard and LeSage, 2011) con�dence intervals are reported for the direct, indirect and total marginal
e¤ects but not the partitioned elasticities, which is presumably because of space constraints in the
published version.
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3 Direct, Indirect and Total Curvature andMonotonic-

ity

With reference to Eqs. 1 and 2 the direct, indirect and total curvature and monotonicity

propositions are as follows.10.

1. Direct Concavity in xi Proposition: Any linear combination of two input
vectors for the ith unit, xAi and x

B
i , will produce direct output for the ith unit, y

ABDir

i ,

that is no less than a linear combination of yA
Dir

i = f(xAi ) and y
BDir

i = f(xBi ):

f
�
�xAi + (1� �)xBi

�
� �f

�
xAi
�
+ (1� �) f

�
xBi
�
;

for all 0 � � � 1.

2. Indirect Concavity in
PN

j=1 xj Proposition: Any linear combination of the
sums of two input vectors across all the jth units,

PN
j=1 x

A
j and

PN
j=1 x

B
j , will produce

indirect output for the ith unit, yAB
Ind

i , that is no less than a linear combination of

yA
Ind

i = f(
PN

j=1 x
A
j ) and y

BInd

i = f(
PN

j=1 x
B
j ):

f

 
�

NX
j=1

xAj + (1� �)
NX
j=1

xBj

!
� �f

 
NX
j=1

xAj

!
+ (1� �) f

 
NX
j=1

xBj

!
;

for all 0 � � � 1.

3. Total Concavity in
PN

i=1 xi Proposition: Any linear combination of the sums
of two input vectors across all N units,

PN
i=1 x

A
i and

PN
i=1 x

B
i , will produce total output

for the ith unit, yAB
Tot

i , that is no less than a linear combination of yA
Tot

i = f(
PN

i=1 x
A
i )

and yB
Tot

i = f(
PN

i=1 x
B
i ):

f

 
!

NX
i=1

xAi + (1� !)
NX
i=1

xBi

!
� !f

 
NX
i=1

xAi

!
+ (1� !) f

 
NX
i=1

xBi

!
;

for all 0 � ! � 1.

4. Direct Monotonicity Proposition: yi is monotonically increasing in the mth
input of the ith unit, xm;i, if @yi=@xm;i � exDirm;i � 0:

5. Indirect Monotonicity Proposition: yi is monotonically increasing in the sum
of the mth inputs of the other jth units,

PN
j=1 xm;j, if @yi=@

PN
j=1 xm;j � exIndm;i � 0:

10Propositions 1 and 4 are properties of non-spatial and direct production functions but they are
referred to here as propositions for reasons of uniformity with the indirect and total curvature and
monotonicity propositions.
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6. Total Monotonicity Proposition: yi is monotonically increasing in the sum of

the mth inputs of all N units,
PN

i=1 xm;i, if @yi=@
PN

i=1 xm;i � exTotm;i � 0:

Having estimated Eqs. 1 and 2, the direct, indirect and total elasticities gives rise to

direct, indirect and total translog production functions, which are assumed to be contin-

uously di¤erentiable. If the above curvature propositions hold for the direct, indirect and

total translog functions this has important economic implications because it would indi-

cate diminishing marginal productivity of own inputs, neighbours�inputs, and own and

neighbours�inputs combined. Using the direct, indirect and total elasticities from Eq.

1, a diagnostic check to see if the curvature and monotonicity propositions hold involves

recognising that ln yi can be expressed as follows. Equivalently ln yi can be expressed in

terms of the direct and indirect elasticities from Eq. 2.

ln yi = f
�
tDiri ; TL (xi)

Dir ; zDiri ; tIndi ; TL(xi)
Ind; zIndi

�
= f

�
tToti ; TL (xi)

Tot ; zToti

�
; (8)

where:

TL (xi)
Dir = Dir

0
lnxi +

1
2
lnx

0
i�

Dir lnxi;

TL (xi)
Ind = Ind

0PN
j=1 lnxj +

1
2

PN
j=1 lnx

0
j�

Ind
PN

j=1 lnxj;

TL (xi)
Tot = Tot

0PN
i=1 lnxi +

1
2

PN
i=1 lnx

0
i�

Tot
PN

i=1 lnxi.

The continuity property of TL (x)Dir, TL (x)Ind and TL (x)Tot requires symmetry

restrictions on the elements of the matrices �Dir, �Ind and �Tot. By applying the argu-

ments of Diewert and Wales (1987) the curvature of the direct, indirect and total translog

production functions can be expressed in terms of the direct, indirect and total Hessian

matrices at the sample mean or outside the sample mean, HDir, HInd and HTot. Using

the indirect case to illustrate the form of the Hessians:

HInd = �Ind � [exInd + exIndexInd
0
; (9)

where [exInd is a diagonal matrix with indirect input elasticities on the main diagonal
and zeros elsewhere, where at the sample mean [exInd = dInd and exInd = Ind; �Ind is a

matrix of second order indirect input elasticities at the sample mean. Concavity of the

direct, indirect and total translog production functions at the sample mean or outside

the sample mean requires that HDir, HInd and HTot are negative semi-de�nite. We

can check whether the Hessians are negative semi-de�nite by checking the sign pattern

of the principal minors in the Hessian. A Hessian is negative semi-de�nite if all the

odd-numbered principal minors are non-positive and all the even-numbered principal

minors are non-negative. The monotonicity propositions for the mth input at the sample

mean and outside the sample mean hold if the relevant element is positive from the

column vector of input elasticities. We therefore calculate the proportion of the mth

11



input elasticities over the sample which satisfy the relevant monotonicity proposition.

4 Application to Aggregate Production of European

Countries

4.1 Data and the Spatial Weights Matrices

We estimate Eqs. 1 and 2 using balanced panel data for 41 European countries for the

period 1990� 2011, using sixteen inverse distance speci�cations of W . All the data was
extracted from version 8:0 of the Penn World Table, PWT8:0 (Feenstra et al., 2013a),

which was the most recent version of the Penn World Table at the time. Recently,

Johnson et al. (2013) reestimated a number of classic empirical macroeconomic models

using di¤erent vintages of the Penn World Table. They conclude that the estimation

results are not robust across di¤erent versions of the Penn World Table. Here, however,

we obtain reasonable estimates of the key parameters from the preferred models using

data from PWT8:0. In addition, PWT8:0 is the �rst version of the Penn World Table to

include data on capital stock. Using an earlier version of the Penn World Table or data

from the World Bank would therefore involve estimating real capital stock.

Output is output-side real GDP, y (in 2005 million U.S. dollars at 2005 PPPs, rgdpo),

where PWT8:0 notation for the variable is in parentheses. As recommended in the doc-

umentation which accompanies PWT8:0 when comparing productivity across countries

we use rgdpo rather than expenditure-side real GDP (rgdpe) or GDP at 2005 national

prices (rgdpna) (Feenstra et al., 2013b, page 31). x is a (1 � 2) vector of input levels.
The inputs are number of workers, x1 (emp), and real capital stock at current PPPs,

x2 (in 2005 million U.S. dollars, ck).11 z is a (1 � 3) vector of variables. z1 is net

exports of merchandise as a share of GDP (where z1 = csh_x + csh_m because all the

observations for csh_m in PWT8:0 are negative to signify that imports are a leakage),

z2 is government spending as a share of GDP (csh_g) and z3 is a dummy variable for

EU membership.12 The descriptive statistics for the continuous variables are presented

in Table 1 and are for the raw data.

[Insert Table 1]

11Following the documentation which accompanies PWT8:0 (Inklaar and Timmer, 2013, page 13) we
use ck as our measure of real capital stock rather than real capital stock at 2005 national prices (in 2005
million U.S. dollars, rkna).
12We examined how the results for z1 are a¤ected by how we capture the trade e¤ect by replacing net

exports as a share of GDP with trade openness (i.e. z1 = csh_x � csh_m) in the non-spatial and the
partial spatial Durbin models. Irrespective of whether we use net exports as a share of GDP or trade
openness we �nd no evidence to suggest that the own/direct e¤ect of z1 is signi�cant. It therefore makes
little di¤erence how we capture the trade e¤ect. The models which we report and discuss are those where
z1 is net exports as a share of GDP.
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All sixteen speci�cations of W are row-normalised so spillovers are inversely related

to the relative great circle distance between countries. The �rst speci�cation of W is

denoted WDist and is a dense matrix with the inverse distance between each pair of cap-

ital cities as weights. As we noted above there is no scope with such a dense matrix

to partition the elasticities. To address this issue and to analyse particular spatial re-

lationships which form part of WDist, the other �fteen speci�cations of W are inverse

distance matrices with cut-o¤s. Five speci�cations of W relate to the nearest 3� 7 cap-
ital cities (W3Near; :::;W7Near). The other ten use inverse distances to the capital cities

of the biggest 3 � 7 import and export partners as weights (W3Import; :::;W7Import and

W3Export; :::;W7Export). The biggest 3 � 7 import and export partners are based on the
average import and export �ows in 2000 U.S. dollars over the period 2000� 2011, where
the data is from the IMF Direction of Trade Statistics. We do not use the biggest 3� 7
import and export �ows over the period 2000 � 2011 as spatial weights because these
weights would be endogenous.

4.2 Overview of the Fitted Models, Curvature and Monotonic-

ity

In this subsection we provide an overview of the �tted spatial models, the associated

marginal e¤ects and the spatial returns to scale to: (i) make a case for the partial spatial

Durbin speci�cation and (ii) argue that the key marginal e¤ects and spatial returns to

scale from the partial spatial Durbin models are reasonable. We then discuss the concavity

and monotonicity results for the partial spatial Durbin models. In the next subsection

we discuss in more detail the direct, indirect and total marginal e¤ects from the partial

spatial Durbin models, which is followed by a subsection on the spatial returns to scale

from this preferred set of models. In Table 2 we present the Within estimate of the

non-spatial model, and selected partial spatial Durbin and spatial autoregressive models

(WDist, W5Near, W5Import and W5Export, where the time period e¤ects are not reported).13

[Insert Table 2]

To test the null hypothesis that the �xed e¤ects in the partial spatial Durbin and

spatial autoregressive models are not jointly signi�cant (i.e. �i = ::: = �N = �) we per-

form a likelihood ratio (LR) tests on each of the �tted models against the corresponding

pooled model. The test statistic is chi-squared distributed with degrees of freedom equal

to the number of restrictions which must be imposed on the unrestricted model to obtain

the restricted model, which in this case is N � 1. For all the partial spatial Durbin and
13The complete set of �tted spatial models is available from the corresponding author upon request.

It should also be noted that when estimating the non-spatial Within model using a standard software
package a small number of time period e¤ects were automatically dropped for reasons of collinearity. We
therefore dropped the same time period e¤ects from our programs to estimate the spatial models.
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spatial autoregressive models we reject the null at the 0:1% level, thereby justifying the

inclusion of �xed e¤ects in Eqs. 1 and 2.14

Although we cannot interpret the parameters from the partial spatial Durbin and the

spatial autoregressive models there are a number of statistically signi�cant local spatial

variables in all the partial spatial Durbin models. This is evident for the selected partial

spatial Durbin models reported in Table 2. The omission of signi�cant local spatial

variables from the spatial autoregressive models gives rise to slightly upwardly biased

estimates of �. For all but one of the sixteen speci�cations of W the estimates of �

from the partial spatial Durbin models are larger than from the corresponding spatial

autoregressive model. That said, on average, the estimate of � from the partial spatial

Durbin models is only 0:06 lower. Also, we �nd that although the direct, indirect and

total marginal e¤ects from the spatial autoregressive models for the lnx1� t and lnx2� t
variables are all signi�cant at the 0:1% level, in all cases these elasticities are small, with

the largest observed elasticities being only �0:04. In this application therefore partial
spatial Durbin models which assume Hicks-neutral technological change seem reasonable.

The non-spatial model yields own labour and capital elasticities at the sample mean

of 0:659 and 0:239, both of which are signi�cant at the 0:1% level. The direct labour and

capital elasticities from the spatial autoregressive models are of the order 0:557�0:641 and
0:236�0:283, respectively, all of which are signi�cant at the 0:1% level. The direct labour
and capital elasticities from the partial spatial Durbin models range from 0:608 � 0:842
and 0:238�0:332, respectively, all of which are once again signi�cant at the 0:1% level. For
all the �tted models therefore we �nd that the own/direct labour elasticity is larger than

the capital elasticity, which corroborates the �ndings from key empirical macroeconomic

studies (e.g. Ireland, 2004, and Smets and Wouters, 2003).

We also �nd that the own/direct labour elasticities are frequently within the range

for the labour income share of GDP for the EU 15 member states as reported by the EU

Commission (0:54� 0:68 from Table 1 in Arpaia et al., 2009). Interestingly, the models

where the direct labour elasticity lies above this range are all partial spatial Durbin

models. That said, for all the partial spatial Durbin models we cannot reject constant

direct returns to scale, which is consistent with the assumption of constant returns in

classic macroeconomic theories (e.g. Ireland, 2004, and Smets and Wouters, 2003) and

with evidence from key empirical studies (e.g. Burnside et al., 1995). In contrast, for all

but three of the sixteen spatial autoregressive models we reject constant direct returns

to scale in favour of decreasing direct returns. Moreover, from the partial spatial Durbin

models we obtain more sensible estimates of indirect returns to scale, where for eleven

14To further illustrate for the partial spatial Durbin models. The LR test statistic is 1084:83 using
WDist and the test statistics range from 998:75 � 1138:97 for models using W3Near � W7Near, from
1023:10 � 1102:12 for models using W3Import �W7Import and from 1020:83 � 1107:32 for models using
W3Export � W7Export. The lower (upper) limit of these ranges or any other range reported in this
application does not relate to W3Near (W7Near), W3Import (W3Import) or W3Export (W7Export).
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of the sixteen partial spatial Durbin models we cannot reject constant indirect returns

and for the other �ve models there is evidence of decreasing indirect returns. From the

spatial autoregressive models, however, we sometimes observe implausibly large indirect

returns to scale particularly in light of the corresponding direct returns. For example, the

W4Import� W7Import spatial autoregressive models yield indirect returns to scale ranging

from 1:570� 2:182, whereas the direct returns are of the order 0:848� 0:921. All things
considered, although the �tted spatial autoregressive models are not without merit we

have a preference for the partial spatial Durbin models and so the remainder of this

empirical analysis is con�ned to these models.

Turning now to the spatial concavity and spatial monotonicity results. A production

function assumes that the ith unit�s output is concave in the ith unit�s inputs. Here there

is the added issues of whether the ith unit�s output is concave/convex in the inputs of the

other units in the sample and concave/convex in the inputs of all N units. Applying the

above diagnostic check of concavity to the non-spatial, direct, indirect and total translog

production functions at the sample mean indicates the following. (i) the non-spatial

translog production function and seven of the sixteen direct translog production functions

are concave. (ii) Fifteen of the sixteen spatial models yield indirect and total translog

production functions which are concave.15 Interestingly, at the sample mean we �nd that

all the directW3Import�W7Import translog production functions are concave, and the only

indirect and total translog production functions which are not concave relate to WDist.

Our �ndings therefore suggest that even though direct concavity is a theoretical property

of the spatial models, and indirect and total concavity are not theoretical properties,

we observe more empirical evidence of indirect and total concavity at the sample mean

than we do direct concavity. Having observed that all the indirect translog production

functions are concave at the sample mean where W is sparse, we can therefore conclude

that at this point in the sample there is diminishing marginal productivity of input

spillovers from near neighbours, and big import and big export partners.

Applying the above diagnostic check of concavity to the non-spatial, direct, indirect

and total translog production functions outside the sample mean is very revealing. We

�nd that the non-spatial translog production function is concave for 91:0% of the sample

and the direct translog production functions are concave for 67:0%�100% of the sample.
The upper limit of this range relates to the direct translog production functions which

are concave at the sample mean. The lower limit relates to the direct WDist translog

production function, which is not concave at the sample mean. The implication is that

for direct translog production functions which are not concave at the sample mean, we

still observe quite a lot of evidence of direct concavity over the sample. On average,

15Where there is no evidence of concavity this does not imply convexity. This is because although the
principal minors in the relevant Hessian are not negative semi-de�nite this does not mean that they are
positive semi-de�nite, which is necessary for convexity.
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the WNear, WExport and WImport indirect translog production functions are concave for

90:5%, 65:1% and 61:5% of the sample, respectively. We can therefore conclude that for

the three types of sparse W , there is much more evidence over the sample of diminishing

marginal productivity of input spillovers from near neighbours.

Having observed that, on average, the WExport and WImport indirect translog produc-

tion functions are not concave for a non-negligible proportion of the sample we sum-

marise these concavity results over the study period in Figures 1 and 2. Speci�cally, we

present the proportions of the sample for which the WExport and WImport indirect and

total translog production functions are concave for countries where we do not observe

direct, indirect and total concavity over the entire sample.16 The most striking feature of

Figures 1 and 2 is the nature of the relationship between the proportions pertaining to the

indirect and total translog functions. The indirect and total proportions for EU countries

follow the same path over the sample. This is also the case for non-EU countries. For

non-EU countries, however, the total proportion is similar in magnitude to the indirect

proportion over the entire study period, whereas for EU countries the indirect proportion

is always below the total proportion. We can therefore conclude that, on average, for

the countries which feature in Figures 1 and 2, concavity of the indirect function is the

principal driver of concavity of the total function.

[Insert Figures 1 and 2]

A production function also assumes that the ith unit�s output is monotonically in-

creasing in the ith unit�s inputs. New lines of enquiry which follow from our spatial

translog production functions include whether the ith unit�s output is monotonically in-

creasing/decreasing in the inputs of the other units in the sample and monotonically

increasing/decreasing in the inputs of all N units. At the sample mean, the own input

elasticities from the non-spatial model, and the direct, indirect and total input elasticities

from all the partial spatial Durbin models are positive.17 This indicates that at the sample

mean the ith unit�s output is monotonically increasing in the ith unit�s inputs, the inputs

of the other units in the sample and the inputs of all N units. Moreover, the own labour

and capital elasticities outside the sample mean from the non-spatial model indicate that,

on average, a country�s output is monotonically increasing in its own labour and capital

for 88:0% and 61:0% of the sample, respectively. On average, the direct, indirect and

total labour (capital) elasticities from the sixteen spatial models satisfy the direct, indi-

rect and total monotonicity propositions for 95:0% (79:0%), 85:4% (58:6%) and 94:8%

(67:6%) of the sample, respectively. We can therefore conclude that, on average, there

is a lot more evidence of direct capital monotonicity from the spatial models than there

16Figure 1 relates to 30 EU and non-EU countries and Figure 2 to 26 EU and non-EU countries.
17We present and analyse the direct, indirect and total input elasticities from the partial spatial Durbin

models in detail in the next subsection.
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is of capital monotonicity from the non-spatial model. Also, even though indirect and

total monotonicity are not properties of the spatial production functions we still observe

a substantial amount of evidence of indirect and total labour monotonicity, and quite a

lot of evidence of indirect and total capital monotonicity.

4.3 Further Discussion of the Preferred Models

Since � is assumed to lie in the parameter space (1=rmin; 1) it cannot be interpreted

as an elasticity. However, the estimates of � indicate how the spatial dependence of

ln y is a¤ected by the speci�cation of W . From Table 2 we can see that the estimate

of � from the WDist model is 0:313. The average estimates of � across the W3Near �
W7Near, W3Import �W7Import and W3Export �W7Export models are 0:399, 0:585 and 0:481,

respectively. This suggests that, on average, output dependence between all European

countries is less than that between near neighbours, big import partners and big export

partners. Furthermore, where sparse speci�cations of W are used, on average, output

dependence is highest between big import partners.

Direct, indirect and total marginal e¤ects for selected partial spatial Durbin models

(WDist, W5Near, W5Import and W5Export) are presented in Table 3.18 We also calculate a

corresponding set of partitioned elasticities up to order nine. However, in the Appendix

for brevity we only report the partitioned elasticities for the factor inputs for orders

r = 0; :::; 6.19 We noted above that the direct labour (capital) elasticity from the WDist

model is 0:842 (0:260) and, on average, the direct labour (capital) elasticities from the

WNear, WExport and WImport models are 0:785 (0:255), 0:717 (0:317) and 0:637 (0:305),

respectively. This highlights how the speci�cation ofW a¤ects the estimates of labour and

capital productivity for the sample average country. Moreover, we are able to establish

from the partitioned elasticities in the Appendix that the principal component of the

direct elasticities is the own (W 0) e¤ect as the higher order e¤ects are always small.

[Insert Table 3]

All the indirect input elasticities are positive. They are also all signi�cant at the 5%

level or lower with the exception of three indirect capital elasticities (W3Near �W4Near

and W3Import). This indicates that the evidence of positive labour spillovers between

European countries is robust across the sixteen speci�cations ofW . In addition, it follows

from the positive set of direct and indirect labour and capital elasticities that all the

total elasticities are positive, all of which are signi�cant at the 0:1% level despite, as we

noted above, some of the indirect capital elasticities not being signi�cant. The average

indirect labour (capital) elasticities from the WNear, WExport and WImport models are

18The direct, indirect and total marginal e¤ects for the other twelve partial spatial Durbin models are
available from the corresponding author upon request.
19All the unreported partitioned elasticities are available from the corresponding author upon request.
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0:478 (0:137), 0:545 (0:207) and 0:745 (0:307), respectively. This indicates that where

sparse speci�cations of W are used, on average, the largest labour and capital spillovers

are from a country�s biggest import partners.

The direct labour elasticity from the WDist model is 0:273 greater than the indirect

labour elasticity and the direct capital elasticity is 0:081 less than the indirect capital

elasticity. For other speci�cations of W the direct and indirect input elasticities are of

a di¤erent relative order of magnitude. To illustrate, on average, for the WNear and

WExport models, the direct capital elasticity is 0:118 and 0:110 larger than the indirect

capital elasticity, respectively. Furthermore, on average, the direct labour elasticity from

the WImport models is 0:108 below the indirect labour elasticity, whereas the direct and

indirect capital elasticities are essentially the same.

Considering now the average input elasticities over the sample. In Figure 3 we present

the average input elasticities from the non-spatial model, and the average direct, indirect

and total input elasticities from the WDist model. We present elasticities from the WDist

model because the speci�cation ofW re�ects the interaction between a European country

and all the other countries in Europe and not just, for example, interaction between a

country and its biggest six import partners. We conclude the following from Figure 3.

Firstly, over the entire sample the non-spatial, direct, indirect and total labour elasticities

are greater than the corresponding capital elasticities. Secondly, from 2003 onwards there

is a rise (decline) in the non-spatial, direct and total labour (capital) elasticities, where,

in general, the rise (decline) tails o¤ towards the end of the sample.

[Insert Figure 3]

In Figure 4 we present the labour and capital elasticities over the sample from the

non-spatial and WDist models for EU and non-EU countries. Over the entire sample, the

direct labour elasticity for EU countries is greater than that for non-EU countries. In

contrast, the direct capital elasticity for EU countries is always less than that for non-EU

countries. In 2004 there was a fall in the direct labour elasticity for EU countries, whereas

there was very little change for non-EU countries. This suggests that labour productivity

in the 2004 EU accession countries was low relative to their EU peers. Conversely, there

was a rise in the direct capital elasticity in 2004 for non-EU countries, which suggests

that capital productivity in the 2004 EU accession countries was below the average for

the non-EU cohort. There was, however, very little change in 2004 in the direct capital

elasticity for EU countries, which suggests that capital productivity in the 2004 EU

accession countries was roundabout the EU average. Interestingly, at the end of the

study period the direct capital elasticity for EU countries is approximately zero.

[Insert Figure 4]
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With the exception of the direct government size elasticity from the W7Near model

which is negative and signi�cant at the 5% level, the direct elasticities for the three z

variables are not signi�cant. This is an important �nding because our non-spatial model

suggests that government size has a signi�cant negative e¤ect and EU membership has

a signi�cant positive e¤ect (see Table 2). Our empirical �ndings for the z variables

therefore highlight how spatial models can challenge widely accepted relationships from

standard non-spatial models such as the robust negative relationship which Folster and

Henrekson (2001) observe between government size and economic growth. The results

for technological change paint a similar picture. We �nd from the non-spatial model that

the time parameter is positive and signi�cant at the 0:1% level. In contrast, all the direct

time parameters from the spatial models are negative and often not signi�cant. The

direct time parameters from the W6Export and the W4Import�W7Import models range from

�0:016� (�0:009) and are all signi�cant at the 0:1% level. We do not, however, interpret
this as evidence of technological regress. We instead interpret these results in the context

of the application and posit that we observe negative direct time e¤ects because our

sample contains a large number of Eastern European countries which underwent major

reform during the study period.

4.4 Estimates of Direct, Indirect and Total Returns to Scale

Using the labour and capital elasticities at the sample mean from the non-spatial model

we compute own returns to scale in the usual way which we denote RTS. Using the

direct, indirect and total labour and capital elasticities at the sample mean from the

spatial models, we calculate RTSDir, RTSInd and RTSTot from Eq. 7. In Table 4 we

present estimates from individual models of RTSDir, RTSInd and RTSTot at the sample

mean, where the t statistics for one-sided tests of the null hypothesis of constant direct,

indirect and total returns to scale are in parentheses. For the sample average country, the

estimate of RTS is 0:898 and the estimates of RTSDir range from 0:906�1:075. From the
non-spatial model we �nd that returns to scale are constant as they are not signi�cantly

less than 1 at the 5% level (t statistic of �1:42). Similarly, it is evident from Table 4 that
we cannot reject constant direct returns to scale for all sixteen spatial models.

[Insert Table 4]

The estimates of RTSInd and RTSTot from the spatial models are of the order 0:365�
1:399 and 1:356 � 2:312, respectively. It is therefore evident that we observe a wider
range of estimates of RTSInd and RTSTot than we do RTSDir. With the exception of the

W3Near�W5Near,W3Export andW3Import models, we cannot reject constant indirect returns

and constant total returns at the 5% level. For theW3Near�W5Near,W3Export andW3Import

models we reject constant indirect returns and constant total returns at the 5% level in
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favour of decreasing indirect returns and decreasing total returns. We can therefore

conclude that we observe decreasing total returns for the W3Near �W5Near, W3Export and

W3Import models because the decreasing indirect returns dominate the constant direct

returns.

From a policy perspective our �ndings on indirect returns to scale suggest that each

country should import more from its biggest 4� 7 import and export partners at the ex-
pense of imports from, among others, its very near neighbours (nearest 3�5 neighbours).
If this results in an increase in the scale of production for a country�s biggest 4�7 import
and export partners and a fall in the scale of production for its very near neighbours, a

country�s output would rise. This is because as we noted above, indirect returns to scale

from a country�s biggest 4� 7 import and export partners are constant, whereas indirect
returns from a country�s nearest 3� 5 neighbours are decreasing.
We draw to a close our discussion of returns to scale by analysing the non-spatial

and spatial returns over the study period. In Figure 6 we present for EU and non-EU

states annual sample average estimates of RTS, and RTSDir and RTSTot from theWDist

model. We note that in Figure 6 the di¤erence between RTSDir and RTSTot is RTSInd.

The most striking feature of Figure 6 is the fall in the four types of returns to scale

(non-spatial, direct, indirect and total) for EU member states at the time of the EU

enlargement in 2004.20 This suggests that the four types of returns to scale for the 2004

EU accession countries are appreciably lower than for other EU states. Furthermore,

Figure 6 post 2004 indicates that the EU enlargement had a persistent impact on the

four types of returns to scale for EU states.

[Insert Figure 6]

5 Concluding Remarks and Further Work

Having estimated spatial translog production functions for European countries over the

period 1990� 2001 using various speci�cations of the spatial weights matrix, we followed
LeSage and Pace (2009) and calculated the direct, indirect and total marginal e¤ects. Us-

ing this approach we related the e¤ect of geography to the factor inputs, which enabled

us to extend classic characteristics of production, namely returns to scale and dimin-

ishing marginal productivity of factor inputs, to the spatial case. Firstly, we proposed

direct, indirect and total returns to scale. Secondly, since the direct, indirect and total

marginal e¤ects collectively constitute three translog production functions we performed

empirical checks to ascertain if the �tted direct, indirect and total functions were con-

cave. Concavity is a theoretical property of a direct production function, which if it is

20In contrast, there is an ever so slight increase in the four types of returns to scale for non-EU states
in 2004.
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satis�ed empirically indicates diminishing marginal productivity of a unit�s own factor

inputs. However, concavity is not a theoretical property of indirect and total production

functions but it is revealing to check empirically if the �tted indirect and total functions

are concave. This is because if a �tted indirect production function is concave this indi-

cates diminishing marginal productivity of factor input spillovers. In addition, if a �tted

total production function is concave this indicates diminishing marginal productivity of

own inputs and input spillovers combined.

The two contributions of this paper are particularly appealing because they are not

limited to a production function and the translog speci�cation. For all the other technical

relationships (cost, revenue, standard and alternative pro�t, and input and output dis-

tance functions) and other possible functional forms (e.g. Cobb-Douglas, Fourier �exible,

Generalized McFadden and Generalized Leontief) we can calculate direct, indirect and

total returns to scale from the �tted direct, indirect and total functions. We can also

conduct empirical checks of these �tted functions for concavity/convexity by looking at

the sign pattern of the principal minors in the Hessian matrices, as we have done here.

There is thus scope for wider application of direct, indirect and total returns to scale, and

the empirical checks of curvature to other technical relationships and functional forms.

Moreover, in other applications the direct, indirect and total marginal e¤ects could be

used to extend other classic characteristics of production to the spatial case. For exam-

ple, in multi-output network industries such as the railways and the airline industry it is

common to distinguish between returns to tra¢ c density, returns to scale and returns to

scope. The networks which �rms operate over in such industries are interconnected and

often overlap which suggests that it would be appropriate to de�ne and calculate direct,

indirect and total measures of returns to tra¢ c density, returns to scale and returns to

scope.
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Figure 1: Selected concavity results across the W export models

Figure 2: Selected concavity results across the W import models
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Figure 3: Selected average labour and capital elasticities
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Figure 5: Selected average returns to scale for EU and non-EU countries

Table 1: Summary statistics

Variable Mean St.Dev. Min Max

Real GDP (million PPP 2005 U.S. $) y 366; 380 589; 103:3 4; 048:91 2; 982; 019
Number of workers (millions) x1 8:41 13:04 0:13 75:46
Real capital stock (million PPP 2005 U.S. $) x2 1; 243; 469 2; 128; 382 9; 205:61 10; 405; 759
Sum of exports and imports of merchandise z1 �0:05 0:13 �0:59 0:67
as a share of GDP i.e. trade openness
Government spending as a share of GDP z2 0:22 0:08 0:07 0:71
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Table 4: Spatial returns to scale from the partial spatial Durbin models
Model PSDM RTSDir PSDM RTSInd PSDM RTSTot

WDist
1.102
(1.58)

0.910
(-0.30)

2.012
(0.04)

W3Near
0.991
(-0.13)

0.365***
(-6.04)

1.356***
(-4.21)

W4Near
1.011
(0.16)

0.465***
(-4.51)

1.476***
(-3.21)

W5Near
1.064
(0.90)

0.617**
(-2.74)

1.682*
(-1.75)

W6Near
1.063
(0.93)

0.767
(-1.51)

1.829
(-0.88)

W7Near
1.069
(1.01)

0.862
(-0.85)

1.930
(-0.35)

W3Import
0.978
(-0.34)

0.401***
(-4.48)

1.378***
(-3.66)

W4Import
0.961
(-0.57)

0.910
(-0.41)

1.871
(-0.50)

W5Import
0.906
(-1.40)

1.397
(1.45)

2.302
(0.96)

W6Import
0.914
(-1.25)

1.399
(1.45)

2.312
(0.99)

W7Import
0.949
(-0.73)

1.155
(0.64)

2.103
(0.36)

W3Export
0.991
(-0.14)

0.441***
(-4.25)

1.432***
(-3.44)

W4Export
0.986
(-0.20)

0.880
(-0.61)

1.867
(-0.56)

W5Export
1.057
(0.86)

0.717
(-1.54)

1.774
(-1.05)

W6Export
1.075
(1.06)

0.925
(-0.35)

2.000
(0.00)

W7Export
1.063
(0.91)

0.798
(-1.03)

1.861
(-0.60)

*, **, *** denote that we reject the null hypothesis of constant returns

at the 5%, 1% and 0.1% levels, respectively, where the t-statistics for

the tests are in parentheses.
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