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Abstract

In the Kalman filter setting, one can model the disturbance term and the ineffi ciency term

of the standard stochastic frontier composed error as unobserved states. This gives significant

flexibility to the econometrician when modeling ineffi ciency. In this study a panel data version

of the local level model is used for estimating time-varying effi ciencies of firms. Monet Carlo

simulation results indicate that whenever the effi ciency levels of the firms fluctuate, some of the

widely used estimators perform poorly in capturing the effi ciencies of the firms. On the other

hand, the Kalman filter performs quite well. We apply the Kalman filter to estimate average

effi ciencies of U.S. airlines during the period 1999-2009 and find that the technical effi ciency of

these carriers do not show a tendency to increase. For the first few years of the study

period, it seems that the effi ciencies of the airlines decreased.
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1 Introduction

Stochastic frontier analysis originated with two seminal papers, Meeusen and van den

Broeck (1977) and Aigner, Lovell, and Schmidt (1977). Jondrow et al. (1982) provided

a way to estimate firm specific technical effi ciency. These contributions were framed in a

cross sectional data framework. Panel data potentially can give more reliable information

about the effi ciencies of the firm. Pitt and Lee (1981) and Schmidt and Sickles (1984)

applied random effects and fixed effects models to estimate firm specific effi ciencies. In

these models the effi ciencies are assumed to be time-invariant. For long panel data this

assumption is might be questionable. The time-invariance assumption was relaxed by

Cornwell, Schmidt, and Sickles (1990) (CSS), Kumbhakar (1990), Battese and Coelli

(1992) (BC), and Lee and Schmidt (1992). The time-varying ineffi ciency models were

followed by dynamic effi ciency models such as Ahn, Good, and Sickles (2000), Desli,

Ray, and Kumbhakar (2003), Huang and Chen (2009), and Tsionas (2006). Work on time

varying effects models and their use in productivity and effi ciency studies have accelerated

in the last decade and we view our current contribution as following in this tradition. Many

of these advances are summarized in the recent chapter by Sickles, Hao, and Sheng (2013).

In this paper we consider the use of the Kalman (1960) filter by treating both the

error term and the ineffi ciency term as unobserved states. In contrast to the classical

Box-Jenkins approach, one also can explicitly model non-stationary stochastic processes

in the Kalman filter setting. This gives significant flexibility to the econometrician when

specifying the ineffi ciency portion of the model. We use the Kalman filter estimator (KFE)

to model the effi ciency component of the stochastic frontier composed error. For this

purpose we use a panel data generalization of the local level model. For long panel data,

relatively inflexible stochastic frontier models (e.g., BC, CSS, and Kumbhakar (1990))

are more likely to fail to capture potentially complex time-varying patterns of the effects
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terms. We examine this claim by conducting a series of Monte Carlo simulations. Results

of these simulations indicate that some of the widely used estimators can perform poorly in

terms of capturing the effi ciencies of firms when we have long panel data with fluctuating

effi ciencies. For example, if the effi ciencies of firms are affected by macro factors that

tend to have cycles, then it is likely that these relatively inflexible approximators will fail

to capture the effi ciency patterns. The KFE can be viewed as an alternative to the factor

model approach addressed in Kneip, Sickles, and Song (2012) and Ahn, Lee, and Schmidt

(2013) and recent generalizations utilizing Bayesian alternatives.

Ueda and Hoshino (2005) appear to have been the first to apply the Kalman filter

to the estimation of effi ciency in a data envelopment analysis (DEA) framework. Ueda

and Hoshino (2005) examine the case where the inputs and outputs are not deterministic.

Kutlu (2010a), Emvalomatis, Stefanou, and Lansink (2011) and our study appear to be

the first to use the Kalman filter to estimate effi ciency in the framework of stochastic

frontier analysis (SFA).1 Emvalomatis, et al. (2011) modeled the logarithm of ratio of

ineffi ciency and effi ciency by a generalized version of an AR(1) process. Their method,

however, does not use the traditional Kalman filter since the state variable is not linearly

incorporated in their model, which is a necessary assumption for the traditional version of

the Kalman filter. Hence, they use a non-linear version of the Kalman filter. In contrast,

we model the effects term as in the local level model and calculate the effi ciency scores

utilizing the approach adopted by Schmidt and Sickles (1984). Moreover, for our model

the traditional Kalman filter method is suffi cient for our estimation purposes, although

extensions of the Kalman filter, for example, to handle endogenous regressors, recently

have been developed and used in a production setting.2 We apply the KFE to estimate

1Our paper is a substantially revised and extended version of Chapter 2 in Levent Kutlu’s dissertation,
Market Power and Effi ciency (2010a). Recently, independent from us, Peyrache and Rambaldi
(2013) proposed a similar Kalman filter model for estimating effi ciencies.

2For details see Jin and Jorgenson (2011), Kim (2006), Kim and Kim (2011), Kim and Nelson (2006),
and Kutlu and Sickles (2012).
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the average effi ciencies of the U.S. airlines during the period 1999-2009. Over our 11

years of study period, the average effi ciency of the airlines do not show a

tendency to increase. Indeed, for the first few years of the study it seems that

the effi ciencies of the airlines decreased. As effi ciency change and technical

(innovation) change are the two main components of productivity growth our

empirical findings are broadly consistent with the findings of others (cf, Färe

et al., 2007) who report declining service quality as problems with delays and

congestion at US major airports accelerated during our sample period.

In the next section we describe the KFE and propose several ways in which it can

be implemented to model productive effi ciency. In section 3 we discuss our Monte Carlo

simulation results. Section 4 provides the data description and results of an analysis of

productivity trends in the US commercial airline industry during the period 1999-2009.

Section 5 concludes. Finally, the Appendix provides additional estimation results

for robustness check purposes.

2 Description of the Kalman Filter Estimator

Consider a panel of I firms observed over n periods. A general stochastic frontier model

is given as follows:

yit = Xitβ + µit + εit (1)

µit = Tµµi,t−1 + τ it + e1it

τ it = Tττ i,t−1 + e2it

where εit ∼ NID
(
0, σ2ε

)
, eit =

[
e1it e2it

]′
∼ NID (0, Q), and vit are independently

distributed error terms. The initial values of the state variables µit and τ it are assumed
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to be jointly normally distributed with zero mean and they are independent from εit and

eit. The component µit is the random heterogeneity specific to ith individual which is

interpreted as effi ciency. In the spirit of Ahn, et al. (2000) we allow the firm to sluggishly

reduce its ineffi ciency by modeling effi ciency as an AR(1) process with trend τ it. We also

allow the firm to adjust quickly. Effi ciency may be a random walk, for example (cf, Kneip

et al., 2012) and thus the model allows for non-stationarity. In our empirical illustration

of the KFE that we explore in section 5, we estimate production effi ciency using

a restricted translog (RTRANS) production function. Of course the full-

translog (FTRANS) functional form can be used and have been used by the

authors to estimate airline effi ciency but the restricted translog provides us

with an empirical vehicle that suits our purpose in this introduction of a new

estimator and is statistically supported over the full translog model.3

As a check of the robustness of results based on the restricted translog

model we also present estimation results from the full translog model in the

Appendix. We calculate the time-varying production frontier intercept common to

all producers in period t as µ̂t = maxi µ̂it (Cornwell, et al., 1990). Relative technical

effi ciency is estimated as TEit = exp(−ûit), where ûit = µ̂t− µ̂it. Equation system 1 can

be rewritten as:

yit = Xitβ + ZBit + εit, εit ∼ NID
(
0, σ2ε

)
(2)

Bit = TBi,t−1 + eit, eit ∼ NID (0, Q)

3In the Kalman filter setting it is possible to estimate a cost function with/without input share
equations. For the simultaneous equations setting we do not consider a stochastic frontier model because
of so called Greene’s problem. See Kumbhakar (1997), Kumbhakar and Lovell (2003), and Kutlu (2013).
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where

Bit =

 µit

τ it

 , eit =

 e1it

e2it

 , T =

 Tµ 1

0 Tτ

 , and Z =

[
1 0

]
.

The Kalman filter equations are given as follows:

ηit = yit −Xitβ − Zbit (3)

Fit = ZPit|t−1Z
′ + σ2ε

Mit = Pit|t−1Z
′

bit|t = bit|t−1 +MitF
−1
it ηit

Pit|t = Pit|t−1 −MitF
−1
it M

′
it

bit|t−1 = Tbi,t−1|t−1

Pit|t−1 = TPi,t−1|t−1T
′ +Q.

The corresponding Kalman smoothing equations are:

Lit = T − TMitF
−1
it Z (4)

ri,t−1 = Z ′F−1it ηit + L′itrit

Ni,t−1 = Z ′F−1it Z + L′itNitLit

b̃it|t−1 = bit|t−1 + Pit|t−1ri,t−1

Vit = Pit|t−1 − Pit|t−1Ni,t−1Pit|t−1

where rin = 0 and Nin = 0. The log-likelihood is given by:

ln(L) =
I∑
i=1

Li = constant− 1

2

I∑
i=1

n∑
t=di+1

(ln(Fit) +
η2it
Fit

) (5)
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where di is the number of diffuse states for firm i.

For the initialization of the Kalman filter, one can use the initial values that are im-

plied by stationarity. In the case of non-stationary states, diffuse priors can be used. One

practical choice is setting the mean squared error matrix of the initial states to be a con-

stant multiple of the identity matrix. The constant is chosen by the econometrician and

should be a large number. Alternatively, one can utilize an exact diffuse initialization.4

For the sake of simplicity we prefer using the former diffuse initialization method. The

traditional Kalman filter estimation may be numerically unstable due to rounding errors

which might cause variances to be non-positive definite during the update process. One

solution to this issue is using the square-root Kalman filter. Hence, we further implement

the square-root Kalman filter.5

As we mentioned earlier our model generalizes the traditional random effects model

so that the effects term is locally approximated. In order to see this consider the local

level model:

yit = Xitβ + µit + εit (6)

µit = µi,t−1 + eit

where εit ∼ NID (0, H) and eit ∼ NID (0, Q). Moreover assume that Q → 0. Hence,

essentially eit = 0 and µit is a deterministic function of initial values, i.e., µit = µi1.

KFE is a random effects-type estimator and is considerably flexible in terms of cap-

turing latent cross-sectional variations that can change over time and which we consider

herein unobservable productivity effects. Of course this comes at a price. If the εit or

µit (effects) terms are correlated with the regressors, then the parameter estimates are

4See Durbin and Koopman (2001) for more details about initialization.
5See Durbin and Koopman (2001) and Kutlu and Sickles (2012) for details of the square-root Kalman

filter.
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inconsistent. The KFE can be modified in line with the control function approach used by

Kim and Kim (2011) in order to allow for endogeneous regressors that are correlated with

the εit term.6 Kim (2008) provides a solution to a similar endogeneity problem in the

context of markov-switching models when the state variable and regression disturbance

are correlated. If the regressors are correlated with the effects term, then we can estimate

the first differenced model:

∆yit = ∆Xitβ + eit + ∆εit (7)

= ∆Xitβ + wit

by instrumental variables and standard Kalman filter estimation methods can be applied

to the consistent residuals, yit −Xitβ̂, in order to obtain the consistent hyperparameter

estimates.7

3 Monte Carlo Experiments

In this section we implement a set of Monte Carlo simulations to examine the finite sample

performance of the KFE. For expositional simplicity we consider a production model. The

data generating process is given by:8

yit = xitβ + εit − µit, εit ∼ NID
(
0, σ2ε

)
(8)

xit = Rxi,t−1 + ξit, ξit ∼ NID (0, I2)

6Kutlu (2010b), Karakaplan and Kutlu (2013), and Tran and Tsionas (2012) use simi-
lar control function approaches to deal with endogeneity issues in the stochastic frontier
context.

7See Harvey (1989) for more details on this type of solutions to the endogeneity problem in Kalman
filter setting.

8When generating regressors we followed Park, Sickles, and Simar (2003, 2007) and Kutlu (2010b).
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where xit =

[
x1it x2it

]
∼ NID

(
0,
(
I2 −R2

)−1)
, β =

[
β1 β2

]′
=

[
0.5 0.5

]′
,

σ2ε = 1, and

R =

 0.4 0.05

0.05 0.4

 .
The generated values for x are shifted around three different means to obtain three

balanced groups of firms. We chose m1 = (5, 5)′, m2 = (7.5, 7.5)′, and m3 = (10, 10)′

as the group means. We simulate a sample of size (I, n) = (50, 60). Each simulation is

carried out 1, 000 times. We consider five different data generating processes for the µit

term:

DGP 1 : µit = ξi (9)

DGP 2 : µit = a0i + a1i(
t

n
) + a2i(

t

n
)2

DGP 3 : µit = b0i +

2∑
r=1

{b1ri sin(
2rtπ

n
) + b2ri cos(

2rtπ

n
)}

DGP 4 : µit = ηtui

DGP 5 : µit = rit

where ξi ∼ NID (0, 1); ηt = exp(−h(t−n)), h = 0.5
n , and ui ∼ NID

+ (0, 1); ali ∼ N (0, 1);

blri ∼ NID (0, 1); ri,t+1 = rit + vit and ri1 ∼ NID (0, 1); and vit ∼ NID (0, 1).

We consider five estimators in our simulations. Each of these estimators correspond to

one of the DGPs. The estimators are: Fixed effects (FE) estimator, CSS within estimator

(CSSW), Fourier estimator (FOE), Battese-Coelli estimator (BC), and KFE. FE, CSSW,

and FOE are described as follows:

β̂ = (X ′MQX)−1X ′MQy (10)

where MQ = I − Q(Q′Q)−1Q′, Q = diag(Wi), i = 1, . . . , I, and Wit = 1 for the FE
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estimator, Wit = [1, t
n , ( tn )2] for the CSSW estimator9 , and Wit = [1, sin( 2tπn ), sin( 4tπn ),

cos( 2tπn ), cos( 4tπn )] for the FOE.

Except the BC estimator the technical effi ciency is estimated as TEit = exp(−ûit),

where ûit = maxi µ̂it − µ̂it. The BC estimator assumes that uit = ηtui where ui ∼

NID+
(
m,σ2u

)
and ηt = exp(−h(t − n)). Let eit = εit − µit. For the BC estimator the

effi ciency is estimated by:

TEit = E[exp(−uit)|eit] (11)

=
1− Φ(ηtσ

∗ − m∗
i

σ∗ )

1− Φ(−m
∗
i

σ∗ )
exp(−ηtm∗i +

1

2
η2tσ
∗2)

where η = (η1, η2, ..., ηn)
′, Φ represents the distribution function for the normal random

variable and

m∗i =
mσ2ε − η′eiσ2u
σ2ε + η′ησ2u

σ∗2 =
σ2uσ

2
ε

σ2ε + η′ησ2u
.

For the KFE we assume the following model:

yit = Xitβ + ZBit + εit, εit ∼ NID
(
0, σ2ε

)
(12)

Bit = Bi,t−1 + eit, eit ∼ NID (0, Q) .

Hence, for the KFE the effects term is modelled as a random walk, which is consistent

with the local level model of univariate time series. We provide the bias, the variance,

the mean squared error (MSE) of the coeffi cients, the (normalized) MSE of the effi ciency

estimates as well as the Pearson and Spearman correlations of effi ciency estimates with

9The original CSSW estimator assumes Wit = [1, t, t2]. However, for the simulations we normalize t
by n. This normalization does not affect the results and is done for numerical purposes.
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the true effi ciency levels. The MSE of the effi ciencies are calculated as follows:

MSEeff(TE0it, T̂Eit) =

∑
i,t

(
TE0it − T̂Eit

)2
∑
i,t TE

2
0it

(13)

where TE0it is the true technical effi ciency level and T̂Eit is the estimated effi ciency level.

The results for the Monte Carlo experiments are given in Table 1-5.

Table 1. Monte Carlo Results for DGP1 (FE)

FE CSSW FOE BC KFE

MSE 0.0006 0.0007 0.0007 0.0008 0.0006

Bias1 0.0002 0.0002 0.0004 -0.0046 0.0002

Bias2 0.0000 -0.0002 -0.0004 -0.0049 0.0000

V ar1 0.0003 0.0003 0.0003 0.0004 0.0003

V ar2 0.0003 0.0003 0.0004 0.0004 0.0003

MSEeff 0.0180 0.0528 0.0873 0.1109 0.0720

CORP 0.9999 0.9995 0.9991 0.9933 0.9983

CORS 1.0000 0.9989 0.9994 0.9987 0.9978
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Table 2. Monte Carlo Results for DGP2 (CSSW)

FE CSSW FOE BC KFE

MSE 0.0007 0.0006 0.0007 0.0009 0.0006

Bias1 -0.0009 -0.0008 -0.0010 -0.0077 -0.0008

Bias2 -0.0007 -0.0003 -0.0006 -0.0072 -0.0005

V ar1 0.0004 0.0003 0.0003 0.0004 0.0003

V ar2 0.0004 0.0003 0.0004 0.0004 0.0003

MSEeff 0.0606 0.0413 0.0776 0.1599 0.0955

CORP 0.9679 0.9985 0.9905 0.9621 0.9926

CORS 0.8882 0.9989 0.9740 0.8623 0.9877

Table 3. Monte Carlo Results for DGP3 (FOE)

FE CSSW FOE BC KFE

MSE 0.0031 0.0015 0.0007 0.0014 0.0008

Bias1 0.0010 0.0006 0.0001 0.0043 0.0006

Bias2 0.0004 -0.0002 0.0001 0.0048 -0.0000

V ar1 0.0016 0.0007 0.0003 0.0007 0.0004

V ar2 0.0016 0.0007 0.0003 0.0007 0.0004

MSEeff 3.2996 0.7278 0.1332 5.6036 0.3621

CORP 0.0547 0.3405 0.9705 0.1711 0.8657

CORS 0.0152 0.5906 0.9986 0.0599 0.9695
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Table 4. Monte Carlo Results for DGP4 (BC)

FE CSSW FOE BC KFE

MSE 0.0006 0.0007 0.0007 0.0005 0.0006

Bias1 0.0002 0.0002 0.0004 -0.0050 0.0002

Bias2 -0.0000 -0.0002 -0.0004 -0.0052 -0.0001

V ar1 0.0003 0.0003 0.0003 0.0002 0.0003

V ar2 0.0003 0.0003 0.0004 0.0002 0.0003

MSEeff 0.0352 0.0845 0.1336 0.0203 0.0993

CORP 0.9985 0.9858 0.9991 0.9890 0.9470

CORS 0.9963 0.9826 0.9980 0.9981 0.9421

Table 5. Monte Carlo Results for DGP5 (KFE)

FE CSSW FOE BC KFE

MSE 0.0151 0.0041 0.0046 0.0116 0.0014

Bias1 0.0006 -0.0003 0.0007 0.0351 0.0002

Bias2 0.0003 -0.0007 0.0002 0.0332 -0.0013

V ar1 0.0077 0.0021 0.0023 0.0048 0.0007

V ar2 0.0074 0.0020 0.0023 0.0045 0.0007

MSEeff 1.0813 0.5592 0.4246 1.3638 0.1856

CORP 0.5032 0.7408 0.7959 0.5288 0.9713

CORS 0.5644 0.9634 0.9214 0.7201 0.9975

For the β estimates, the estimators generally show similar performances. For both

the β estimates and the effi ciency estimates, whenever there is a high variation in the

effi ciency term, less flexible estimators, FE and BC, perform worse than others. KFE

performs particularly well in terms of correlations between the true effi ciency and the

estimated effi ciency. It is worth noting that all estimators other than the FOE and
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the KFE performed very poorly for DGP3. Indeed, the FE and BC estimators show

almost no correlation between the true effi ciency and the estimated effi ciency.10 This

is because these estimators are not flexible enough to capture the time-varying pattern

of the effi ciency. Hence, this simulation study shows that when the effi ciencies of the

firms fluctuate the performance of non-flexible effi ciency estimators can be arbitrarily

misleading in capturing the performances of firms.

4 The U.S. Airline Industry 1999-2009

4.1 The Data

We utilize the data from the U.S. airline industry during the period 1999-2009. This is

a time period in which the U.S. airlines faced serious financial troubles. The financial

losses for the domestic passenger airline operations was more than three times the losses

between 1979-1999. Some of the exogenous cost shocks during our sample period are

due to increased taxes and jet fuel prices. At the same time fares fell and remained

relatively low. In real terms the prices were about 20% lower in 2009 than in 2000. Since

1979 demand grew steadily. However, we observe sharp demand falls in 2001-2002 and

2008-2009 time periods. Due to capital costs and sticky labor prices such unanticipated

decreases in demand brought additional complications to an industry which had been

experiencing relatively stable and steady demand growth. Another feature of our sample

time period is the increase in load factors. Average load factors increased from 71% to

81% between 2000 and 2009 due in part to improved yield management techniques and

reduced flight frequency but which also lead to reduced levels of service quality.11

The unbalanced data is mainly obtained from the International Civil Aviation Orga-

10In some of the simulation runs we observed even negative correlations.
11For more information about the financial situations of U.S. airlines see Borenstein (2011).
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nization (ICAO). The data set that we use has 35 airlines and 298 observations.12 We

construct our input and output variables following the approaches of Sickles (1985) and

Sickles et al. (1986). Our inputs are flight capital (K, quantity of planes), labor (L, quan-

tity of pilots, cabin crew, mechanics, passenger and aircraft handlers, and other labour),

fuel (F , quantity of barrels of fuel), and materials (M , quantity index of supplies, outside

services, and non-flight equipment’s). We focus on value added from capital and labor in

our empirical illustration of the KFE by netting out from revenue output (RTK, revenue

ton kilometers) the value of the intermediate energy and materials. Thus our technology

is rather simple and uses capital and labor to produce value added revenue ton kilometers.

In addition to the above, we include two sets of control variables into our model to

account for the heterogeneity of output and the capital input. The first set of control

variables is concerned with service characteristics: (i) aircraft stage length (SL) and (ii)

load factor (LF). SL is the average length of a route segment, obtained by dividing the

miles flown by the number of departures. The shorter (low value) the stage length the

shorter the period an airlines’ aircraft spends in each flight segment. LF reflects the

average occupancy of an airline’s aircraft seats, is considered a measure of service quality,

and is often used as a proxy for service competition. A lower load factor often implies that

the airline assigns a relatively larger number of planes to a particular route and reflects

higher service quality by the airline. The second set of control variables is concerned

with capital stock characteristics. The first is the average size of the airline’s aircraft

(SIZE). The larger the size of the aircraft the more services can be provided without a

proportionate increase in factors such as flight crew, passenger and aircraft handlers, and

landing slots. The second is the percentage of each airline fleet that is a (JET) aircraft

to total number of aircraft. JET is considered as a proxy for the aircraft speed. The jet

12The full data set has 39 airlines and 321 observations. We droped 1 airline with less than 4 observa-
tions and 3 cargo airlines.
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aircraft tends to fly around three times as fast as turboprops aircraft and in addition the

jet aircraft requires a relatively lower number of flight crew resources. A brief description

of the variables is given in Table 6.

Table 6: Description of Variables

Variable Description Min %25 Perc. %75 Perc. Max Mean Std

Q (y) ln(Value added RTK) 10.9126 12.6098 15.0266 16.8962 13.9445 1.6004

QL (x1) ln(Labor quantity) 3.7351 6.5181 8.5467 10.2650 7.4982 1.5112

QK (x2) ln(Capital quantity) 1.9459 3.4410 5.6113 6.7038 4.5095 1.2414

LF (x3) Load factor 0.1500 0.5300 0.6210 0.8030 0.5731 0.0990

SL (x4) ln(Stage length) 5.5968 6.5164 7.5368 8.5643 7.0730 0.6636

JET (x5) Jet engines 0.0000 0.9003 1.0000 1.0000 0.8722 0.2614

SIZE (x6) ln(Average plane size) 2.7568 4.0943 5.2244 5.8926 4.7579 0.6020

4.2 Analysis using the KFE

In this section we examine the technical effi ciency trends in the U.S. airline industry

during the period 1999-2009 using our new KFE and compare our findings to those from

the BC and the CSSW estimator. The BC estimator is probably the most widely used

of the panel estimators and is a random effects type estimator of effi ciency change. The

CSSW has somewhat more flexibility and provides a fixed effects treatment. We estimate

the value-added production function of the U.S. airlines (revenue ton kilometers less a

value weighted average of materials and energy). The production function is specified as

linear in logs as:

yit =
∑6

j=1
βjxjit + µit + εit (14)

µit = µi,t−1 + eit
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where εit ∼ NID(0, σ2ε) and eit ∼ NID(0, σ2e) are independently distributed error terms.

The estimates for the production function parameters and average effi ciencies

for the KFE and the BC and CSSW are given in Table 7 and Figure 1. The

overall average effi ciencies for the KFE and the BC and CSSW estimators

are 0.577, 0.438, and 0.632, respectively. Following Kutlu (2012), any firm

with effects term in the upper and bottom th% range at least at one time

period were trimmed.13 This is a common approach for the regression-based

estimators that rely on order statistics. We choose th = 7.5 which corresponds

to dropping top and bottom three firms.14 Trimming does not apply to BC

since it directly calculates technical effi ciencies.

The median of the returns to scale values for the KFE and the BC and

CSSW estimators are 0.883, 0.94, and 1.034, respectively. A common finding for

the airline industry is that the airlines operate in a constant returns to scale

environment. In a single-output production setting, Basu and Fernald (1997)

provide a theoretical proof that the value added estimate of returns to scale

is smaller (greater) than the corresponding gross output model when there

is decreasing (increasing) returns to scale. Hence, there is a magnification

effect for returns to scale estimates when a value added production function is

used.15 Therefore, the returns to scale estimate for the KFE might have been

driven by this fact. Nevertheless, the constant returns to scale value of 1 lies

within one sample standard deviation away from the median value of returns

to scale estimates from the KFE. In terms of regularity conditions, KFE

outperforms other two estimators. More precisely, while the KFE satisfies

13See also Berger (1993) and Berger and Hannan (1995).
14We round the numbers up to the closest integer. A common choice is th = 5. However,

it seems that this was not enough to eliminate the outliers in our case. For the sake of
completeness, we provide the effi ciency estimates for th = 5 in the Appendix.

15For similar results see also Diewert and Fox (2008).
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curvature regularity condition at each time period, the BC and CSSW violate

curvature regularity condition at each time period. At the median values of

the regressors, all three estimators satisfy monotonicity conditions at each

time period. According to KFE estimator, the average effi ciency of the U.S.

airlines is relatively stable for the second half of the study period. However,

there is some evidence in decrease in effi ciency for the first half of the study

period.

One potential empirical concern would be whether the effects term is correlated with

the regressors or not. If the effects term is correlated with the regressors, then the

coeffi cient estimates would be inconsistent. One advantage of the CSSW estimator over

the random effects-type estimator is that even when the regressors are correlated with the

effects term, the parameter estimates are consistent. Hence, the parameter estimates from

the CSSW model might be used to a test the consistency of parameter estimates from the

KFE. We test the consistency of parameter estimates from KFE using a Wu-Hausman

test and cannot reject the KFE estimates at 5% significance level.

[Table 7 is about here]
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We also check the robustness of our results by estimating a full version of

the translog model. A common problem with the translog production func-

tion is that by increasing the number of variables by adding second-order

ln terms to the Cob-Douglas functional form is that the second order terms

tend to exhibit considerable multicollinearity. The full translog model esti-

mates are given in the Appendix. For the full translog model, not many of

the parameters were significant at 5% significance level. We choose our final

model specification based on the BIC for the Kalman filter. This criterion is:

BIC =
−2 lnL+ ln (s) (p+ d)

s

where L is the likelihood value, s is the sample size, p is the number of hyperparameters,

and d is the number of diffuse priors (Durbin and Koopman, 2001). The BIC values for

the full translog and restricted translog forms are 1.805 and 1.714, respectively.

Based on the BIC and the fact that almost all the parameters of the full

translog model are insignificant, we prefer the restricted translog functional

form.

5 Conclusions

In this study we proposed a way to measure technical effi ciency via the Kalman filter.

Our new Kalman Filter estimator (KFE) provides a local approximation to general time

and cross sectionally varying effects terms in a standard panel model. We examine the

new estimator in a series of limited Monte Carlo experiments. Our simulation results in-

dicate that while the performance of the KFE is similar to the performances of the other

estimators for the coeffi cient estimates, the KFE outperforms the less flexible estimators
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in terms of the correlation of the effects with true effects. A result of our simulations is

that the widely used BC estimator performed very poorly whenever there is substantial

variation in the effects, or for our canonical stochastic frontier effi ciency model, the effi -

ciency term. The performance was so poor that sometimes the BC effi ciency estimates

were negatively correlated with the true effi ciency. If the sample data contains events that

can cause jumps in the productivity of firms, then the KFE estimator appears able to im-

prove on other standard panel treatments that are less flexible in specifying the temporal

variation in the effects. We then used the KFE in order to estimate the average effi ciency

of the U.S. airlines. Point estimates for the KFE indicate that average effi ciency

of the U.S. airlines fell by more than 10% during earlier years of time period.

However, the extent of decrease in effi ciency was not very robust. Neverthe-

less, we can confidently claim that the airlines do not improve their effi ciency

levels for these earlier years. For the second half of our study period, the

average effi ciency remains relatively constant. This agrees with Färe et al.

(2007) who found a decline in service quality since deregulation, yielding in

general lower rates of productivity in their sample period 1979I-1996IV.
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7 Appendix

In this appendix we present additional results based on the full translog model

and our truncation scheme when calculating the effi ciency estimates for KFE

and CSSW estimator. The full translog estimates are given in Table 8. The

parameter estimates are generally not significant even at 10% significance level.

The median of the returns to scale values for the KFE, CSSW, and BC esti-

mators are 0.8625, 1.1478, and 1.0184, respectively. The corresponding returns

to scale estimates from the restricted model were 0.883, 0.94, and 1.034, respec-

tively. Hence, for the KFE and BC estimator the returns to scale estimates

are robust to the choice of the functional form. Nevertheless, for both re-

stricted and unrestricted translog production models the constant returns to

scale value of 1 lies within one sample standard deviation away from the me-

dian value of returns to scale estimates from each of these estimates. All the

estimators satisfy the monotonicity conditions at the median values of the

regressors at each time period. In contrast to the restricted translog produc-

tion model where only KFE satisfied the regularity conditions at the median

values of the regressors, KFE and CSSW estimator satisfies the curvature

conditions at each time period. BC estimator failed to satisfy the regularity

conditions at four of the time periods. The estimates for the production func-

tion parameters and average effi ciencies for the KFE and the BC and CSSW

estimators are given in Table 8 and Figure 2. The overall average effi ciencies

for the KFE, CSSW, and BC are 0.637, 0.458, and 0.605, respectively. These

values are not substantially different from their restricted counterparts, i.e.,
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0.577, 0.438, and 0.632. The average effi ciencies for the full translog model are

provided in Figure 2. In line with the restricted translog model, KFE pre-

dicts decrease in effi ciency in first few years of the study period and relatively

stable effi ciency levels for the last couple of years.

[Table 8 is about here]
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Figure 2: Effic iency  Es timates  for Trans log Model

KFE
CSS
BC

Finally, we present the effi ciency estimates when the trimming for KFE

and CSSW are done for top-bottom 5% (rather than 7.5%) of the effects term

when calculating the effi ciencies. The BC estimates remain the same as they

are not subject to such trimming. The average effi ciency estimates for 5%

trimming case are provided in Figure 3 and Figure 4.
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Figure 3: Effic iency  Es timates  for Res tric ted Trans log Model

KFE
CSS
BC
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Figure 4: Effic iency  Es timates  for Trans log Model

KFE
CSS
BC
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