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1. Introduction

Conventional univariate tests for the presence of unit roots in aggregate economic time
series have important implications for the conduct of domestic macro and international
economic policy. These tests unfortunately have been plagued by reliance on relatively short
time series with relatively low frequencies. Size distortions and low power are well-known
problems with conventional testing procedures [see, e.g., Stock (1991), and Campbell and
Perron (1991), Domowitz and El-Gamal (2001)]. Current macroeconomic theory provides
little in the way of guidance on how to increase the power and moderate size distortions other
than by increasing the length of the time series. Reliance on the sort of information that
was utilized in conventional empirical macroeconomics before the Lucas critique took hold,
namely the information contained in the correlated errors of other overidentified equations
in the structural system, has little apparent place in the current unit root testing literature.
Even agreement on the candidate set of correlated series has little theoretical basis (Stock
and Watson, 1999). The first wide-spread use of univariate tests for the presence of unit
roots was carried in the seminal work of Nelson and Plosser (1982) who found that most
U.S. macroeconomic time series could be characterized as a univariate time series structure
with a unit root. Subsequent empirical analyses have largely confirmed their findings while
the literature continues to acknowledge the low power of unit root tests and an implication
of this low power, that in finite samples it is almost impossible to discriminate between a
unit root process and one which is very close to it.

Clearly the unit root hypothesis has important implications for determining the effect
of random shocks on an economic system and the literature has not been silent on the many
efforts to overcome the low power of conventional unit root tests. One such contribution
was made by Hansen (1995) who noted that conventional univariate unit root tests ignore
potentially useful information from related time series and that the inclusion of related
stationary covariates in the regression equation may lead to a more precise estimate of
the autoregressive coefficient. He proposed to use the covariates augmented Dickey-Fuller
(CADF) unit root test rather than conventional univariate unit root tests. He analyzed the
asymptotic local power functions for the CADF t-statistic and discovered that enormous
power gains could be achieved by the inclusion of appropriate covariates. His Monte Carlo
study suggested that such gains were also possible in the finite sample power performances
of the CADF vis-a-vis conventional ADF test.

Hansen (1995) showed that the limit distribution of the CADF test is dependent on
the nuisance parameter that characterizes the correlation between the equation error and
the covariates. Therefore, it is not possible to perform valid statistical inference directly
using the CADF test. To deal with this inferential difficulty, Hansen (1995) suggested using
critical values based on an estimated nuisance parameter.3 His two-step procedure can be
a practical solution for the implementation of the CADF test. However, relying on the
estimated value of the nuisance parameter would introduce additional source of variability.

3Table 1 in Hansen (1995) provides asymptotic critical values for the CADF t-statistic for values of the
nuisance parameter in steps of 0.1 via simulations. For intermediate values of the nuisance parameter, critical
values are selected by interpolation.
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In this paper, we apply the parametric bootstrap method with iid errors to the CADF
test to deal with the nuisance parameter dependency and to provide a valid basis for in-
ference based on the CADF test. In particular, we show the consistency of the bootstrap
CADF test and establish the asymptotic validity of the critical values from the bootstrap
distribution of the test. The asymptotic properties of the CADF and bootstrap CADF tests
are investigated and the finte sample performances of the CADF tests are compared with
various well-known univariate unit root tests. The simulations show that the CADF test
based on the two-step procedure suffers from serious size distortions, especially when the
covariates are highly correlated with the error, while our bootstrap CADF test significantly
improves the asymptotic and the finite sample size performances of the CADF test. More-
over, the bootstrap CADF test offers dramatic power gains over the conventional unit root
tests.

As illustrations, we apply our covariate tests and standard unit root tests in a reexam-
ination of the stationarity of U.S. domestic macroeconomic aggregates and international
rates of exchange. The former are analyzed with the extended Nelson and Plosser data set.
We investigate whether the findings of unit roots in the Nelson and Plosser data set are
reversed when the more powerful covariate tests are used. The latter are examined using
postwar annual CPI-based real exchange rates for fifteen OECD countries, for which most
previous studies failed to reject the null hypothesis of a unit root. We find that our new
covariate test rejects the unit root hypothesis in four series in the Nelson and Plosser data
set for the period 1930-1972 and six cases for the postwar real exchange rates.

The paper is organized as follows. Section 2 introduces the unit root test with covariates
and derives limit theories for the sample tests. Section 3 applies the bootstrap methodol-
ogy to the sample tests considered in Section 2 and establishes the asymptotic validity of
the bootstrap test. Section 3 also provides a discussion of practical issues arising from the
implementation of the bootstrap methodology. Section 4 considers asymptotic powers of
the bootstrap tests against the local-to-unity models. In Section 5, we conduct simulations
to investigate the finite sample performances of the bootstrap CADF test. Empirical appli-
cations are presented in Section 6 while Section 7 concludes. All mathematical proofs are
provided in the Appendix.

2. Unit Root Tests with Covariates

2.1 Model and Assumptions

We consider the time series (yt) given by

4yt = αyt−1 + ut (1)

for t = 1, . . . , n, where4 is the usual difference operator.4 We let the regression errors (ut) in
the model (1) to be serially correlated, and also allow them to be related to other stationary

4We start with the simple model without the deterministic components to effectively deliver the essence
of the theory. The models with the deterministic components will be considered at the end of this section.
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covariates. To define the data generating process for the errors (ut) more explicitly, let (wt)
be an m-dimensional stationary covariates. It is assumed that the errors (ut) are given by
a p-th order autoregressive exogenous (ARX) process specified as

α(L)ut = β(L)′wt + εt (2)

where L is the lag operator, α(z) = 1−
∑p
k=1 αkz

k and β(z) =
∑q
k=−r βkz

k.
We consider the test of the unit root null hypothesis α = 0 for (yt) given as in (1),

against the alternative of the stationarity α < 0. The initial value y0 of (yt) does not affect
our subsequent analysis so long as it is stochastically bounded, and therefore we set it at
zero for expositional brevity.

Under the null hypothesis of unit root, 4yt = ut and we have from (2) that

4yt = αyt−1 +
p∑

k=1

αk4yt−k +
q∑

k=−r
β′kwt−k + εt (3)

which is an autoregression of 4yt augmented by its lagged level yt−1 and the leads and
lags of the m stationary covariates in (wt). Indeed, the above regression may be viewed
as a further augmentation of the usual ADF regression, which is an autoregression of 4yt
augmented by its lagged level yt−1 only. Our test statistics for testing the unit root in (yt),
which are introduced in the next section, will be based on the least squares estimator for α
from this CADF regression.

For the subsequent analysis, we also need to be more explicit about the data generating
process for the stationary variables (wt) that are used as covariates. We assume that (wt)
is generated by an AR(`) process as

Φ(L)wt+r+1 = ηt (4)

where Φ(z) = Im −
∑`
k=1 Φkz

k.
To define explicitly the correlation between the covariates (wt) and the series to be

tested (yt), we consider together the innovations (ηt) and (εt) that generate, respectively,
the covariates (wt) and the regression error (ut), which in turn generates (yt). Define

ξt = (εt, η
′
t)
′

and denote by | · | the Euclidean norm: for a vector x = (xi), |x|2 =
∑
i x

2
i and for a matrix

A = (aij), |A|2 =
∑
i,j a

2
ij . We now lay out assumptions needed for the development of our

asymptotic theory.

Assumption 2.1 We assume

(a) Let (ξt) be a sequence of iid random variables such that Eξt = 0, Eξtξ
′
t = Σ > 0 and

E|ξt|γ <∞ for some γ ≥ 4.
(b) α(z), det(Φ(z)) 6= 0 for all |z| ≤ 1.

Here, we assume (ξt) to be an iid sequence to make the bootstrap procedure in the next sec-
tion meaningful. Assumption 2.1 (a) excludes conditional heteroskedasticity (e.g. GARCH)
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in all equations in the system including the covariates. It also states that the regression
error (εt) in equation (3) is serially uncorrelated and independent of (ηt+k) for k ≥ 1. The
condition effectively implies that the regression error (εt) is orthogonal to the lagged differ-
ences of the dependent variable (4yt−1, . . . ,4yt−p) and the leads and lags of the stationary
covariates (wt+r, . . . , wt−q), which is necessary for the regression (3) to be consistently es-
timated via usual least squares estimation. (See Hansen (1995) for more details.)

Under Assumption 2.1 (a), the following invariance principle holds

1√
n

[ns]∑
t=1

ξt →d B(s) (5)

for s ∈ [0, 1] as n → ∞. The limit process B = (Bε, B
′
η)
′ is an (1 + m)-dimensional vector

Brownian motion with covariance matrix

Σ =

(
σ2ε σεη
σηε Ση

)
. (6)

The asymptotic behavior of (yt) is determined by that of (ut) as shown in model (1),
and the latter is dependent upon the limiting behavior of the stationary covariates (wt) and
the innovations (εt) as indicated in the relation (2). We may then derive the limit behavior
of (ut) using the specification given in (2) from those of (εt) and (wt) as follows:

1√
n

[ns]∑
t=1

ut →d π(1)
(
β(1)′Ψ(1)Bη(s) +Bε(s)

)
as n → ∞, where π(1) = 1/α(1) and Ψ(1) = Φ(1)−1. This is derived in Lemma A.1 (b)
in the Appendix. The variance of the limit process given in the previous equation is easily
derived as

σ2u = π(1)2
(
β(1)′Ψ(1)ΣηΨ(1)′β(1) + σ2ε + 2β(1)′Ψ(1)σηε

)
(7)

using the parameters defined in the preceding equations.
Let zt = (4yt−1, . . . ,4yt−p, w′t+r, . . . , w′t−q)′. We assume

Assumption 2.2 σ2u > 0 and Eztz
′
t > 0.

The condition σ2u > 0 ensures that the series (yt) is I(1) when α = 0, which is necessary to
be able to interpret testing α = 0 as testing for a unit root in (yt). The condition Eztz

′
t > 0

implies that the stationary regressors in (zt) are asymptotically linearly independent, which
is required along with the condition Assumption 2.1 (a) for the consistency of the LS
coefficient estimates for (zt).

2.2 Covariates Augmented Unit Root Tests

To introduce our test statistics more effectively, we first define

An =
n∑
t=1

yt−1εt −
(

n∑
t=1

yt−1z
′
t

)(
n∑
t=1

ztz
′
t

)−1( n∑
t=1

ztεt

)
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Bn =
n∑
t=1

y2t−1 −
(

n∑
t=1

yt−1z
′
t

)(
n∑
t=1

ztz
′
t

)−1( n∑
t=1

ztyt−1

)

Cn =
n∑
t=1

ε2t −
(

n∑
t=1

εtz
′
t

)(
n∑
t=1

ztz
′
t

)−1( n∑
t=1

ztεt

)
.

Now we have

α̂n = AnB
−1
n

σ̂2n = n−1
(
Cn −A2

nB
−1
n

)
s(α̂n)2 = σ̂2nB

−1
n

where α̂n is the OLS estimator of α from the covariates augmented regression (3), σ̂2n is the
usual error variance estimator, and s(α̂n) is the estimated standard error for α̂n. We also
let

α̂n(1) = 1−
p∑

k=1

α̂k (8)

where α̂k’s are the OLS estimators of αk’s in the CADF regression (3).
The statistics that we will consider in the paper are given by

Sn =
nα̂n
α̂n(1)

(9)

Tn =
α̂n
s(α̂n)

. (10)

Note that Sn is a test for the unit root based on the estimated unit root regression coefficient,
and Tn is the usual t-statistics for testing the unit root hypothesis from the CADF regression
(3). The test Tn is considered in Hansen (1995).

The limit theories for the tests Sn and Tn are given in

Theorem 2.3 Under the null hypothesis α = 0, we have as n→∞,

Sn →d σε

∫ 1

0
Q(s)dP (s)∫ 1

0
Q(s)2ds

Tn →d

∫ 1

0
Q(s)dP (s)(∫ 1

0
Q(s)2ds

)1/2

under Assumptions 2.1 and 2.2, where

Q(s) = β(1)′Ψ(1)Bη(s) +Bε(s)
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and P (s) = Bε(s)/σε.

The asymptotic distributions are presented explicitly in terms of the Brownian motions Bε
and Bη via Q = β(1)′Ψ(1)Bη + Bε and P = Bε/σε. In this way we can easily relate the
asymptotic distributions of the bootstrapped tests, which are developed in the next section,
to the limit distributions of the sample statistics given above. Moreover, it is straightforward
to show that the null asymptotic distribution for the CADF test Tn given in Theorem 2.3
is actually equivalent to the one derived in Hansen (1995, Theorem 3) (thus its derivation
is omitted).

The asymptotic distributions for both Sn and Tn are nonstandard and depend upon
the nuisance parameters that characterize the correlation between the covariates and the
regression error as shown in Hansen (1995). The limit distributions are therefore basically
unknown. Consequently it is impossible to perform valid statistical inference based directly
on the CADF tests. As a feasible practical solution, one may simulate critical values for the
tests for each value of the nuisance parameter and use its estimated value to obtain the most
appropriate critical value available from the tabulated values.5 This two-step procedure
can be a feasible practical solution for the implementation of the CADF tests as long as
the estimators are consistent; in finite samples, however, the variability in the nuisance
parameter estimate is not properly taken into account and more careful interpretation of
the results is required.

The models with deterministic components can be analyzed similarly. When the time
series (xt) with a nonzero mean is given by

xt = µ+ yt (11)

or with a linear time trend
xt = µ+ δt+ yt (12)

where (yt) is generated as in (1), we may test for the presence of the unit root in the process
(yt) from the CADF regression (3) defined with the fitted values (yµt ) or (yτt ) obtained from
the preliminary regression (12) or (13). The limit theories for the CADF tests given in
Theorem 2.3 extend easily to the models with nonzero mean and deterministic trends, and
are given similarly with the following demeaned and detrended Brownian motions

Qµ(s) = Q(s)−
∫ 1

0
Q(t)dt

and

Qτ (s) = Q(s) + (6s− 4)

∫ 1

0
Q(t)dt− (12s− 6)

∫ 1

0
tQ(t)dt

in the place of the Brownian motion Q(s).

5Noting that the null limit distribution of the CADF t-test depends only on the correlation coefficient ρ2,
Hansen (1995, Table 1, p.1155) provides the asymptotic critical values for the CADF t-test for values of ρ2

from 0.1 to 1 in steps of 0.1. The estimate for ρ2 is constructed as ρ̂2 = σ̂2
vε/σ̂

2
vσ̂

2
ε , where vt = β(L)′wt + εt,

and σ̂vε,σ̂2
v and σ̂2

ε are consistent nonparametric estimators of the corresponding parameters.
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In the next section, we consider bootstrapping the covariates augmented tests Sn and
Tn to deal with the nuisance parameter dependency problem and to provide a valid basis
for inference based on the covariates augmented unit root tests.

3. Bootstrap Unit Root Tests with Covariates

In this section, we consider the bootstrap for the covariates augmented unit root tests Sn
and Tn introduced in the previous section. We establish the bootstrap consistency of the
tests and show the asymptotic validity of the tests. Throughout the paper, we use the usual
notation ∗ to signify the bootstrap samples, and use P∗ and E∗ respectively to denote the
probability and expectation conditional on a realization of the original sample. Various
issues arising in practical implementation of the bootstrap methodology are also addressed.

To construct the bootstrap CADF tests, we first generate the bootstrap samples for
the m-dimensional stationary covariates (wt) and the series (yt) to be tested. We begin by
constructing the fitted residuals which will be used as the basis for generating the bootstrap
samples. We first let ut = 4yt and fit the regression

ut =
p∑

k=1

α̃kut−k +
q∑

k=−r
β̃′kwt−k + ε̃t (13)

by the usual OLS regression. It is important to base the bootstrap sampling on regression
(14) with the unit root restriction α = 0 imposed. The samples generated by regression (3)
without the unit root restriction do not behave like unit root processes, and this will render
the subsequent bootstrap procedures inconsistent as shown in Basawa et al. (1991).

Next, we fit the `-th order autoregression of wt as

wt+r+1 = Φ̃1,nwt+r + · · ·+ Φ̃`,nwt+r−`+1 + η̃t (14)

by the usual OLS regression. We may prefer, especially in small samples, to use the Yule-
Walker method to estimate (15) since it always yields an invertible autoregression, thereby
ensuring the stationarity of the process (wt) [see, e.g., Brockwell and Davis (1991, Sections
8.1 and 8.2)]. As the sample size increases, however, the problem of noninvertibility in the
OLS estimation vanishes a.s., and the two methods become equivalent. Our subsequent
results are applicable also for the Yule-Walker method, since it is asymptotically equivalent
to the OLS method.

We then generate the (1 + m)-dimensional bootstrap samples (ξ∗t ), ξ∗t = (ε∗t , η
∗′
t )′ by

resampling from the centered fitted residual vectors (ξ̃t), ξ̃t = (ε̃t, η̃
′
t)
′ where (ε̃t) and (η̃t) are

the fitted residuals from (14) and (15). That is, obtain iid samples (ξ∗t ) from the empirical
distribution of (

ξ̃t −
1

n

n∑
t=1

ξ̃t

)n
t=1

.
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The bootstrap samples (ξ∗t ) constructed as such will satisfy E∗ξ∗t = 0 and E∗ξ∗t ξ
∗′
t = Σ̃,

where Σ̃ = (1/n)
∑n
t=1 ξ̃tξ̃

′
t.
6

Next, we generate the bootstrap samples for (w∗t ) recursively from (η∗t ) using the fitted
autoregression given by

w∗t+r+1 = Φ̃1,nw
∗
t+r + · · ·+ Φ̃`,nw

∗
t+r+1−` + η∗t (15)

with appropriately chosen `-initial values of (w∗t ), where Φ̃k, 1 ≤ k ≤ ` are the coeffi-
cient estimates from the fitted regression (15). Initialization of (w∗t ) is unimportant for our
subsequent theoretical development, though it may play an important role in finite sam-
ples.7 Then we obtain (w∗t+r, . . . , w

∗
t−q) from the sequence (w∗t ), and construct the bootstrap

samples (v∗t ) as

v∗t =
q∑

k=−r
β̃′kw

∗
t−k + ε∗t (16)

using the LS estimates β̃k, −r ≤ k ≤ q from the fitted regression (14). Then we generate
(u∗t ) recursively from (v∗t ) using the fitted autoregression given by

u∗t = α̃1u
∗
t−1 + · · ·+ α̃pu

∗
t−p + v∗t (17)

with appropriately chosen p-initial values of (u∗t ), and where α̃k, 1 ≤ k ≤ p are the estimates
for αk’s from the fitted regression (14).

Finally, we generate (y∗t ) from (u∗t ) with the null restriction α = 0 imposed. This is to
ensure the nonstationarity of the generated bootstrap samples (y∗t ), which is claimed under
the null hypothesis, and to make the subsequent bootstrap tests valid. Thus we obtain (y∗t )
as

y∗t = y∗t−1 + u∗t = y∗0 +
t∑

k=1

u∗k (18)

which also requires initialization y∗0. An obvious choice would be to use the initial value y0
of (yt), and generate the bootstrap samples (y∗t ) conditional on y0. As discussed earlier, the
choice of initial value may affect the finite sample performance of the bootstrap; however,
the effect of the initial value becomes negligible asymptotically as long as it is stochastically
bounded. If the mean or linear time trend is maintained as in (12) or (13) and the unit root
test is performed using the demeaned or detrended data, the effect of the initial value y∗0 of

6Alternatively, we may resample (ε∗t ) and (η∗t ) separately from the (ε̃t) and (η̃t) for t = 1, . . . , n. In this
case, however, preserving the original correlation structure needs more care. We basically need to prewhiten
(ε̃t) and (η̃t) before resampling, and then recolor the resamples to recover the correlation structure. More
specifically, we first prewhiten (ε̃t) and (η̃t) by premultiplying Σ̃−1/2 to ξ̃t = (ε̃t, η̃

′
t)
′, for t = 1, . . . , n. Next,

generate ξ∗t = (ε∗t , η
∗′
t )′ by resampling from the prewhitened (ε̃t) and (η̃t) and subsequently recoloring them

by premultiplying Σ̃1/2 to restore the original dependence structure.
7We may use the first `-values of (wt) as the initial values of (w∗t ). The bootstrap samples (w∗t ) generated

as such may not be stationary processes. Alternatively, we may generate a larger number, say n + M , of
(w∗t ) and discard first M -values of (w∗t ). This will ensure that (w∗t ) become more stationary. In this case
the initialization becomes unimportant, and we may therefore simply choose zeros for the initial values.
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the bootstrap sample would disappear. We may therefore just set y∗0 = 0 for the subsequent
development of our theory in this section.

To construct the bootstrapped tests, we consider the following bootstrap version of the
covariates augmented regression (3), which was used to construct the sample CADF tests
Sn and Tn in the previous section

4y∗t = αy∗t−1 +
p∑

k=1

αk4y∗t−k +
q∑

k=−r
β′kw

∗
t−k + ε∗t . (19)

We test for the unit root hypothesis α = 0 in (20) using the bootstrap versions of the
CADF tests, defined in (23) and (24) below, that are constructed analogously as their
sample counterparts Sn and Tn defined in (9) and (10).

Similarly as before, we denote by α̂∗n and s(α̂∗n) respectively the OLS estimator for α and
the standard error for α̂∗n obtained from the CADF regression (20) based on the bootstrap
samples. To define them more explicitly, we let

z∗t = (4y∗t−1, . . . ,4y∗t−p, w∗′t+r, . . . , w∗′t−q)′

and subsequently define

A∗n =
n∑
t=1

y∗t−1ε
∗
t −

(
n∑
t=1

y∗t−1z
∗′
t

)(
n∑
t=1

z∗t z
∗′
t

)−1( n∑
t=1

z∗t ε
∗
t

)

B∗n =
n∑
t=1

y∗2t−1 −
(

n∑
t=1

y∗t−1z
∗′
t

)(
n∑
t=1

z∗t z
∗′
t

)−1( n∑
t=1

z∗t y
∗
t−1

)

and the variance of the bootstrap sample (ε∗t ), which is given by

σ̃2n =
1

n

n∑
t=1

(ε̃t − ε̄n)2, (20)

where ε̄n = n−1
∑n
t=1 ε̃t. Then we may write the OLS estimator of α from the bootstrap

CADF regression (20) and its estimated variance as

α̂∗n = A∗nB
∗−1
n

s(α̂∗n)2 = σ̃2nB
∗−1
n .

We also define, accordingly as α̂n(1) introduced in (8),

α̃n(1) = 1−
p∑

k=1

α̃k, (21)

where α̃k’s are the estimates for αk’s from the fitted regression (14).

10



Now we consider the statistics

S∗n =
nα̂∗n
α̃n(1)

(22)

T ∗n =
α̂∗n
s(α̂∗n)

(23)

corresponding to Sn and Tn introduced in (9) and (10) of the previous section. For the
construction of the bootstrap statistics S∗n and T ∗n , it is possible to replace α̃n(1) and σ̃2n
with α̂∗n(1) and σ̂2∗n , the bootstrap counterparts to α̂n(1) and σ̂2n. We can compute α̂∗n(1)
and σ̂2∗n from regression (20) in the same way that their sample counterparts are computed
from regression (3). We may indeed show that such replacements do not affect the limiting
distributions of the statistics. For the theoretical analysis in the paper, however, we only
consider S∗n and T ∗n defined in (23) and (24) for the expositional brevity.8

To implement the bootstrap CADF tests, we repeat the bootstrap sampling for the
given original sample and obtain a∗n(λ) and b∗n(λ) such that

P∗ {S∗n ≤ a∗n(λ)} = P∗ {T ∗n ≤ b∗n(λ)} = λ (24)

for any prescribed size level λ. The bootstrap CADF tests reject the null hypothesis of a
unit root if

Sn ≤ a∗n(λ), Tn ≤ b∗n(λ).

It will now be shown under appropriate conditions that the tests are asymptotically valid,
i.e., they have asymptotic size λ. We do not analyze in the paper the randomness associated
with the bootstrap sampling in computing the bootstrap critical values a∗n(λ) and b∗n(λ).
We simply assume that enough number of bootstrap iterations are carried out to make it
negligible. See Andrews and Buchinsky (1999) for a study on the number of bootstrap
iterations to achieve the desired level of bootstrap sampling accuracy.

We now introduce the notation →d∗ for bootstrap asymptotics. For a sequence of
bootstrapped statistics (Z∗n), we write

Z∗n →d∗ Z a.s.

if the conditional distribution of (Z∗n) weakly converges to that of Z a.s. Here it is assumed
that the limiting random variable Z has distribution independent of the original sample
realization.

We now present the limit theories for the bootstrap CADF tests S∗n and T ∗n .

Theorem 3.3 Under the null hypothesis α = 0, we have as n→∞,

S∗n →d∗ σε

∫ 1

0
Q(s)dP (s)∫ 1

0
Q(s)2ds

in P

8In the simulation and empirical applications, σ̂2∗
n is used to compute T ∗n instead of σ̃2

n. This is because
Chang and Park (2003, p.392) show in the simulations that σ̂2∗

n performs slightly better than σ̃2
n.
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T ∗n →d∗

∫ 1

0
Q(s)dP (s)(∫ 1

0
Q(s)2ds

)1/2
in P

under Assumptions 2.1 and 2.2 where Q(s) and P (s) are defined in Theorem 2.3, and ‘in
P’ signifies the usual convergence in probability.

Theorem 3.3 shows that the bootstrap statistics S∗n and T ∗n have the same null limiting
distributions as the corresponding sample statistics Sn and Tn. It implies, in particular,
that the bootstrap CADF tests are asymptotically valid.

To discuss the asymptotic validity of the tests using bootstrap critical values, denote
by S and T the weak limits of Sn and Tn respectively, and define a(λ) and b(λ) to be the
asymptotic critical values of the size λ tests based on Sn and Tn, i.e.,

P{S ≤ a(λ)} = P{T ≤ b(λ)} = λ.

Since the distributions of S and T are absolutely continuous with respect to Lebesgue
measure, we have from Theorem 3.3

P∗{S∗n ≤ a(λ)}, P∗{T ∗n ≤ b(λ)} → λ a.s. (25)

under Assumptions 2.1 and 2.2, and the results in (26) imply

(a∗n(λ), b∗n(λ))→ (a(λ), b(λ)) a.s.,

where a∗n(λ) and b∗n(λ) are the size λ bootstrap critical values defined in (25). Consequently,
we have under Assumptions 2.1 and 2.2

P{Sn ≤ a∗n(λ)}, P{Tn ≤ b∗n(λ)} → λ

as n→∞, which proves that the bootstrap CADF tests have size λ asymptotically.
Our bootstrap theory here easily extends to the tests for a unit root in models with de-

terministic trends, such as those introduced in (12) or (13). It is straightforward to establish
the bootstrap consistency for the CADF tests applied to the demeaned and detrended time
series, using the results obtained in this section. The bootstrap CADF tests are therefore
valid and applicable also for the models with deterministic trends.

4. Asymptotics under Local Alternatives

In this section, we consider local alternatives given by

H1 : α = − c
n

(26)
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where c > 0 is a fixed constant, and let (yt) be generated by (1) and (2). The asymptotic
theories for the local-to-unity models are now well established [see, e.g., Stock (1994)], and
the following limit theories are easily derived from them for our model:

Sn →d S(c) = −c+ σε

∫ 1

0
Qc(s)dP (s)∫ 1

0
Qc(s)

2ds

(27)

Tn →d T (c) = − c

σε

(∫ 1

0
Qc(s)

2ds

)1/2

+

∫ 1

0
Qc(s)dP (s)(∫ 1

0
Qc(s)

2ds

)1/2
(28)

where

Qc(s) = Q(s)− c
∫ 1

0
e−c(s−r)Q(r)dr

is Ornstein-Uhlenbeck process, which may be defined as the solution to the stochastic dif-
ferential equation dQc(s) = −cQc(s)ds+ dQ(s), and Q is defined in Theorem 2.3.

Bootstrap theories for the local-to-unity models are established in Park (2003). Here we
may follow Park (2003) to obtain the limit theories for the bootstrap statistics S∗n and T ∗n
for our local-to-unity models.

Theorem 4.1 Let Assumptions 2.1 and 2.2 hold. Then under the local alternatives (27),
we have

S∗n →d∗ S in P

T ∗n →d∗ T in P

as n→∞, where S and T are the limiting null distributions of Sn and Tn given in Theorem
2.3.

We note that the limiting distributions of the bootstrap statistics S∗n and T ∗n under the
local alternatives are identical to their limiting distributions under the exact unit root null.
This is, however, well expected, since the bootstrap samples are generated under the unit
root restriction regardless of the true data generating mechanism, thereby forcing them to
behave asymptotically as the unit root processes. Note also that

P{S(c) ≤ x} > P{S ≤ x}, P{T (c) ≤ x} > P{T ≤ x} (29)

for all x ∈ R, and therefore we may expect that the unit root testing based on the tests Sn
and Tn have some discriminatory powers against the local-to-unity model. In particular,
we have under the alternative of the local-to-unity model,

P∗{S ≤ a∗n(λ)}, P∗{T ≤ b∗n(λ)} →a.s. λ
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as n→∞, which in turn gives

lim
n→∞

P∗{Sn ≤ a∗n(λ)} = lim
n→∞

P∗{S(c) ≤ a∗n(λ)} > λ a.s.

lim
n→∞

P∗{Tn ≤ b∗n(λ)} = lim
n→∞

P∗{T (c) ≤ b∗n(λ)} > λ a.s.

due to (28)–(30). Thus, the bootstrap unit root tests have non-trivial powers against the
local-to-unity model.

5. Simulations

5.1 Data Generating Process

In this section, we perform a set of simulations to investigate the performances of the
bootstrap tests. For the comparison of the bootstrap tests with other well-known tests, we
consider only T ∗n statistic here. For the simulations, we consider (yt) given by the unit root
model (1) with the error (ut) generated by

ut = α1ut−1 + vt,

where the error term (vt) is given by

vt = βwt + εt. (30)

We model the covariate (wt) to follow an AR(1) process as follows:

wt+1 = φwt + ηt. (31)

The innovations (ξt), ξt = (εt, ηt)
′ are randomly chosen from iid N(0,Σ), where

Σ =

(
1 σεη
σηε 1

)
.

Under this setup, we have the following covariate augmented ADF regression:

4yt = αyt−1 + α14yt−1 + βwt + εt. (32)

The relative merit of constructing a unit root test from the covariate augmented re-
gression depends on the correlation between the error (vt), vt = βwt + εt and the covariate
(wt). As can be seen clearly from (31) and (32), the correlation depends on two parameter
values, the coefficient β on the covariate and the AR coefficient φ of the covariate. We thus
control the degree of correlation between the error (vt) and the covariate (wt) through these
parameters. The values of β and φ are allowed to vary among {−0.8,−0.5, 0.5, 0.8}. The
coefficient α1 on the lagged difference term is set at 0.2 throughout the simulations. The
contemporaneous covariance σεη is set at 0.4. For the test of the unit root hypothesis, we
set α = 0 and investigate the sizes in relation to corresponding nominal test sizes. For the
powers, we consider α = −0.10.9

9Here we use the simple terms “size” and “power” to mean “Type I error” and “rejection probability
under the alternative hypothesis”, respectively.
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5.2 Asymptotic Properties

In this section, the asymptotic size properties of the CADF and the bootstrap CADF tests
are compared. The size properties of the CADF test critically depends on the consistent
estimation of the correlation coefficient ρ2. Unless ρ2 is consistently estimated, the CADF
test would be biased even in asymptotics. Therefore, more specifically, we first examine
whether the correlation coefficient ρ2 is precisely estimated in the CADF test. Next, the
performances of the CADF test based on the estimated ρ̂2 are evaluated and compared
with those of the bootstrap CADF test. To implement the CADF test, sample correlation
coefficient ρ̂2 is estimated and the asymptotic critical values corresponding to each sample
estimate of ρ2 are read from Table 1 in Hansen (1995).10 The bootstrap CADF test,
however, does not depend on the asymptotic critical values and uses bootstrapped critcal
values instead. The regression equation for the CADF test is based on the true model and
it contains one lagged difference term and the current value of the covariate. The regression
equation for covariate is estimated using the AR(1) model as in (32).

Given our model specifications in Section 5.1, ρ2 = σ2vε/(σ
2
vσ

2
ε) is calculated as follows:

σ2v =
β2σ2η

(1− φ)2
+ σ2ε +

2βσηε
1− φ

σvε =
βσηε
1− φ

+ σ2ε

where σ2ε = 1, σ2η = 1 and σηε = 0.4. Then, for the parameters we consider, the true ρ2 varies
from 0 to 0.950. Now, we can compare the estimated ρ̂2 with true ρ2 under the simulation
setup as shown in Table 1. The table shows that, in finite samples (for n = 25, 50, 100),
there are large biases in ρ̂2 especially when ρ2 is low. For example, when the true ρ2 is 0.0,
the estimated ρ̂2 is 0.206. Since the CADF test attains potential power gains at low levels
of ρ2, the size distortions possibly caused by these biases pose serious problems to the use
of the test. Moreover, these biases do not seem to vanish even for large n (e.g., n = 3, 000)
for some parameter values. For example, for (β = −0.5, φ = 0.5) and (β = −0.8, φ = 0.5),
the differences between ρ2 and ρ̂2 are non-negligible. From these results, we conclude that
the CADF test may suffer from size distortions that come from the imprecise estimation of
ρ2.

Next, we examine the size performances of the tests in Table 2. As the sample size
increases, the overall size performances of the CADF test improves and the sizes are close
to 5% . However, as mentioned above, when ρ2 are incorrectly estimated for (β = −0.5, φ =
0.5) and (β = −0.8, φ = 0.5), the CADF test tends to slightly underreject. Moreover,
although we have correct estimate ρ̂2 for large n, the CADF test still shows large size
distortions. For example, for (β = −0.5, φ = 0.8), ρ̂2 is close to zero, the true value of
ρ2, but the size of the CADF test is only 1% (for n = 3, 000). Again, this is a serious
drawback of the CADF test because the CADF test are the most useful in terms of good
power performance at low levels of ρ2. Therefore, when ρ2 is low, the CADF test, which is
based on ρ̂2, shows unreliable results even in large samples.

10Sample estimates of ρ2 are calculated using the Parzen kernel and Andrews’ (1991) automatic bandwidth.
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In contrast, the bootstrap CADF test does not depend on the estimated ρ̂2 for choosing
critical values and it uses, instead, bootstrapped critical values for the test. As shown in
the Table 2, the sizes of the bootstrap CADF test are more stable along various parameter
values than the CADF test. In particular, for the parameters that we considered above,
the bootstrap CADF test shows good size properties. For example, for (β = −0.5, φ = 0.8),
the size of the bootstrap CADF test is 5.1% while that of the CADF test is only 1.4%.
The bootstrap CADF test tends to slightly overreject for some parameters such as (β =
−0.5, φ = −0.8), but this is not our concern because it corresponds to the case where ρ̂2 is
very high and the CADF tests are the least useful in terms of power performance. Based
on these experiments, we conclude that the bootstrap CADF test shows more reliable size
performances even in large samples than the CADF test.

5.3 Finite Sample Properties

The finite sample performances of the bootstrap CADF test are compared with those of
the sample CADF test computed from the regression (33) as well as other well-known
unit root tests. More specifically, in addition to the CADF test, we also consider another
CADF test suggested by Elliott and Jansson (2003) (called the EJ test here). This test is
known to have maximal power against a point alternative. Thus, these three tests are all
covariate-augmented and the comparisons of their size and power performances would be
meaningful.

As a benchmark, we consider the ADF test based on the usual ADF regression. The
ADF regression does not include the covariate (wt) as a regressor, and thus the regression
error effectively becomes vt = βwt + εt with the DGP considered in our simulation setup.
Hence, the conventional ADF test suffers from efficiency loss by failing to utilize additional
information coming from (wt). Moreover, in our simulation setup, the effective error (vt)
is obviously serially correlated due to serial correlation in (wt). This is another source
of inefficiency that may be handled by increasing the number of lagged differences, thus
whitening the error (vt).

Choice of lag lengths critically affects the finite sample properties of the tests. To
investigate the effects of lag length selection on the finite sample performances of the tests,
we use popular lag length selection methods. For the ADF and the CADF tests, AIC
was used and, for the EJ test, BIC was used as suggested by Elliott and Jansson (2003).
Maximum lag length is set at four for n = 50 and 100 and two for n = 25. For the choice of
the lead and lag lengths of covariate of the CADF test, maximum lengths are set at four.

The lead and lag lengths of the covariates are chosen in such a way that ρ̂2 is minimized.
It is worth noting that such choice of covariate does not necessarily induce pretest bias
in finite samples. As mentioned above, the consistent estimation of ρ2 affects the size
properties of the CADF test whereas the choice of the covariates with low ρ̂2 is intended
to improve powers. In other words, choosing the covariates based on ρ̂2 affects the power
performance but it does not necessarily introduce pretest bias for size as long as ρ2 is
consistently estimated. On the other hand, this means that imprecise estimaes of ρ2 may
cause problems both in size and powers for the CADF test. The size of the bootstrap CADF
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test, however, is not affected but the power may be by the imprecise estimates of ρ2.
Other well-known univariate unit root tests are also considered. Ng and Perron (2001)

argue that the MIC information criterion along with GLS-detrended data yields a set of
tests with desirable size and power properties. In light of their argument, we calculate the
following tests based on the GLS-detrended data for both the statistic and the spectral
density, and select the lag lengths by the MIC, with the lower bound zero and the upper
bound given by int(12(n/100)1/4). The tests considered are the Zα test by Phillips and
Perron (1988), MGLS tests as discussed in Ng and Perron (2001), DFGLS test and feasible
point optimal test (Pt) by Elliott, Rothenberg and Stock (1996), and modified point optimal
test (MPt) by Ng and Perron (2001).11

All regressions include a fitted intercept, and the results when including a time trend
are also provided. Sample sizes of n = 25, 50, and 100 are examined for 5% nominal
size tests. Size-adjusted powers are reported where sizes are controlled by using the finite
sample critical values. The reported results are based on 3,000 simulation iterations with
the bootstrap critical values computed from 3,000 bootstrap repetitions. Each replication
discards the first 100 observations to eliminate start-up effects. The finite sample sizes and
powers for the tests are reported in Tables 3-14.

Tables 3-5 show the size results for the tests when only constant is included and Tables
6-8 show the size results when a time trend is also included. As can be seen clearly, the
sample CADF test has quite noticeable size distortions over various parameters especially
for small samples (n = 25). For example, sizes are higher than 10% and in some cases it
reaches 19%. On one hand, these distortions imply that the limit distribution of the CADF
test poorly approximates the finite distribution. On the other hand, this also implies that
the choice of lag lengths produces a lot of variability of the estimates and add to the size
distortions of the CADF test. The distortions are even larger when a time trend is included.
Hence, the CADF test shows severe size distortions especially for small samples and with a
time tend.

The boostrap CADF test substantially correct the biases of the CADF test particularly
when ρ̂2 is low. In Table 3, for example, when (β = 0.500, φ = 0.800) for ρ̂2 = 0.126, the
size of the CADF test is 11.8% while that of the bootstrap CADF test is 6.4%. Thus, even
in finite samples, the bootstrap CADF test shows reasonably good size performances when
ρ̂2 is low. This improvement of the size performance is much conspicuous when a time
trend is included and for small samples. When the sample size is n = 100, however, both
tests show similar size performances and the size improvements of the bootstrap test almost
disappear. When ρ̂2 is high, the performances of the bootstrap test also becomes worse.
But, as we mentioned above, that is not our concern because the CADF tests usually work
best for low ρ2.

The size performances of the EJ test is the most unstable among the considered tests.
For example, the size distortions of the EJ test for small sample are hugh as high as 38.6%
in Table 4. Moreover, the test becomes more unstable when a time trend is included. Thus,
even for n = 100, sometimes the sizes are over 75% and in other cases they are very close to

11We thank Elliott and Jansson, and Ng and Perron for sharing their codes with us.
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5%. Hence, the size performances the EJ test are very unstable across different parameters.
Therefore, the EJ test is unrealiable especially when a time trend is included and for small
samples.

The size performances of the ADF test are as good as those of the bootstrap CADF
test. This implies that ignoring covariates does not significantly affect the size properties of
the ADF test. The difference is that the ADF test shows similar size performances across
various parameters whereas the bootstrap CADF test shows better size performances when
ρ̂2 is low than when ρ̂2 is high. The other tests shows reasonably good size properties as
sample size increases but they show quite unstable results when a time trend is included.
Thus, for some parameters, they tend to overreject and, for others, they tend to severely
underreject.

In summary, although the null distribution of the CADF test is asymptotically valid,
the finite sample performances are poor. On the other hand, the bootstrap test shows good
size performance in finite samples and the performances are similar to those of the ADF
test especially when ρ̂2 is low. Other tests show reasonably good size performances when
only a constant is included, but they show unstble results when a time trend is included,
over-or underrejecting the null. Therefore, we conclude that only the ADF test and the
bootstrap CADF test show reliable and satisfying size performances.

The Tables 9-11 show the results of powers when a contant is included and the Tables
12-14 show those when a time trend is included. The significant improvement in the finite
sample sizes that the bootstrap CADF test offers does not come at the expense of finite
sample powers. Indeed, the results in Tables 9-14 show that the bootstrap CADF test offers
drastic power gains over the conventional ADF test when ρ̂2 is low, where the covariates
tests are expected to improve the power properties. The powers of the bootstrap CADF
are more than two or three times as large as those of the other tests when ρ̂2 is low.
Moreover, the powers of the bootstrap CADF test are comparable to those of the CADF
test and sometimes even larger than those of the CADF test especially when a time trend is
included. The EJ test has the highest nominal power but its size-adjusted power is similar
to those of the CADF tests.

As discussed above, the estimate of the correlation coefficient ρ2 affects the power per-
formances of the CADF test because the covariates are chosen in a way that minimizes the
estimated ρ̂2. Since ρ̂2 may be imprecisely estimated, the (bootstrap) CADF test may suffer
from potential power loss. However, as shown in the simulation results above, the powers
of the (bootstrap) CADF tests are much higher than those of any other univariate tests.
Hence, we conclude that the effects of ρ̂2 on the power performances of the (bootstrap)
CADF tests would be minor.

In contrast, the other tests show considerably lower powers compared with those of three
covariate-based tests. The powers of the ADF test are lowest among the tests considered
and the other tests show similar power performances. In particular, when a time trend is
included, the other tests substantially lose powers. These results show that using covariates
may bring enormous power gains over other univariate unit root tests.

In summary, the bootstrap CADF test has good size and power properties for all com-
binations of parameter values and time series dimensions and is robust to the inclusion of
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a time trend. From all these observations, we conclude that the bootstrap CADF test has
the best size and power properties under our simulation setup.

6. Empirical Applications

We next apply our testing procedures to a set of macroeconomic aggregates and real ex-
change rates. A number of econometric studies have found that standard tests for a unit
root, such as the ADF tests (Dickey and Fuller, 1979; Said and Dickey, 1984) and the PP test
(Phillips and Perron, 1988), have low power against stationary alternatives in the relatively
small samples we consider in this section [see Dejong, Nankervis, Savin, and Whiteman
(1992a, 1992b), among others]. This is especially true when a series under investigation
is a near-integrated process. Since the low power of the univariate unit root tests is the
primary problem, it is important to investigate whether or not the null hypothesis of a unit
root is rejected by more powerful tests. Moreover, various univariate unit root tests provide
mixed results for a given time series when they do not consistently reject or accept the null
hypothesis. In such a situation making a definitive conclusion about the (non)stationarity
of the time series may be problematic. Hence, the use of more powerful tests may point to
sharper conclusions about the stationarity property of the particular time series.

In our empirical applications, we consider two data sets. The first is the Nelson and
Plosser (1982) data set extended by Schotman and Van Dijk (1991). The second is annual
CPI-based real exchange rates for fifteen OECD countries from 1950 to 1998. The real
exchange rate, rit, for the i-th country is computed using the U.S. dollar as numeraire cur-
rency.12 Real exchange rates are analyzed for Australia, Austria, Belgium, Canada, France,
Finland, Germany, Italy, Japan, Luxemburg, the Netherlands, Norway, Spain, Switzerland
and the United Kingdom.

The testing strategy is as follows. We use lagged differences of each series for covariates,
thus, only stationary covariates will be utilized in our multivariate tests.13 Among the
candidates for covariates we choose the one which gives us the smallest ρ̂2 since this covariate
provides the most powerful test, as shown in Section 5. All the regressions include a
constant. The lags of the differenced dependent variable are selected using the Akaike
Information Criterion (AIC) with the maximum lag length four.14 For the CADF tests,
current covariate is included and the combinations of past and future covariates are tried
up to the lag length four, among which the lag lengths with the smallest ρ̂2 are chosen. For
the bootstrap tests, we use critical values computed from 5,000 bootstrap iterations.

12The real exchange rate is calculated as rit = log(eitp
∗
it/pit), where eit, p

∗
it, and pit denote respectively

nominal spot exchange rate for the i-th country, the CPI for the U.S. and the CPI for the i-th country.
13Stock and Watson (1999) note that current theoretical literatures in macroeconomics provide neither

intuition nor guidance on which covariates are candidates for our CADF and bootstrap CADF tests other
than on the basis of stationarity.

14The Bayesian Information Criterion (BIC) gives almost similar results.
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6.1 The Nelson and Plosser Data Set

The Nelson and Plosser data set is one of the most widely analyzed macroeconomic aggre-
gate time series data sets. Nelson and Plosser (1982) studied the time series properties of
fourteen series and found that all of them, except the unemployment series, were charac-
terized by stochastic nonstationarity. We apply the aforementioned unit root tests to the
fourteen time series whose nonstationarity have been questioned. All variables in the data
set are measured annually in natural logarithms. The estimated period is 1929-1973 in con-
sideration of the structural breaks in 1929 and 1973 coinciding with the onset of the Great
Depression and oil shock [see Perron (1989)]. A time trend is included in the regressions.
Table 13 presents the results.

For all cases the values of ρ̂2 are lower than 0.09, thus we should expect, based on our
simulation results, more powerful test results with the CADF and the bootstrap CADF
tests than with the other tests. With these new tests we can reject the null hypothesis of
a unit root for five series (GNP Deflator, Wages, Money Stock, Velocity and S&P500) by
the sample CADF test and three series (GNP Deflator, Money Stock and Velocity) by the
bootstrap CADF test. Looking at the other tests, the EJ test rejects for eight series and
the DFGLS test rejects for two series. The other tests reject the null hypothesis for only one
series or none of the series.

The results for other tests are not surprising because the simulation results for n = 50
with a time trend show that the powers of other tests are very low. Also, for such small
ρ̂2 as our data set, the EJ test as well as the CADF test tend to severely overreject15. On
the other hand, the bootstrap CADF test shows reasonable size and power performances.
Thus, we may conclude that the results from the EJ test and the CADF test are less reliable
and accept the results from the bootstrap CADF test that there are three stationary series
in the Nelson and Plosser data set for the considered sample period.

6.2 Real Exchange Rates

Another situation in which the covariate tests are especially useful is with certain types
of panel data in which cross-sectional correlations between time series are present. If this
information can be properly modelled, then it can provide an efficiency gain over univariate
methods as pointed out by Hansen (1995). To illustrate these potential efficiency (and
power) gains, we analyze annual CPI-based real exchange rates for fifteen OECD countries
for the period of 1950-1998, the period including the Bretton Woods system and flexible
exchange rate regime.

Movements in real exchange rates are thought to be driven primarily by deviations from
purchasing power parity (PPP), and models of exchange rate determination are built on the
assumption that the PPP hypothesis holds. There are, however, conflicting empirical evi-
dences. Studies by MacDonald (1996), Frankel and Rose (1996), Oh (1996), Papell (1997),
O’Connell (1998), and more recently, Cheung, Lai, and Bergman (2004), Choi (2004) and

15ρ̂2 is low when φ is positive according to the simulation results. When we calculate the estimates φ of
AR(1) lags of potential covariates, they all take large positive numbers.
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Chortareas and Kapetanios (2009) among others, suggest that the issue is not completely
settled. In particular, when considering data for the recent flexible rate experience (1973-
present), many researchers have been unable to reject the null hypothesis of a unit root [see,
e.g., Papell (1997), Papell and Theodoridis (1998), and O’Connell (1998)]. One response
to this nonrejection might be that the tests do not encompass a sufficiently long time span
to capture the mean reversion necessary to reject the null hypothesis. It is of interest,
therefore, if real exchange rates are mean reverting for longer spans of time than the period
of recent float regime, using low frequency data. One advantage of using relatively low
frequency annual or quarterly data is that it can possibly increase the power of statistical
tests for random walk behavior (Shiller and Perron, 1985).

In the estimated equation, time trend is not included because such an inclusion would
be theoretically inconsistent with the long-run PPP [see Papell (2002)]. Table 14 shows the
results for the real exchange rates. The estimated ρ̂2 are lower than 0.15. As anticipated, the
tests using the covariates are able to reject for more countries than other univariate tests,
consistent with the increased power of the covariate-based tests. Thus, the EJ test rejects
for four countries and the CADF and the bootstrap CADF tests for six countries whereas
the other tests reject for only one or three or even none of the countries. In our sample for
real exchange rates, it happened that the countries that turned out to be stationary from
the CADF test and the bootstrap CADF test coincided with each other. Thus the two
tests give us consistent results. Unlike the case of the Nelson and Plosser data set, the EJ
test does not reject the null hypothesis more often than the CADF tests. As shown in the
simulations, the bootstrap CADF test shows the best size and power properties, and we
conclude that the real exchange rates of Australia, Canada, Finland, Italy, the Netherlands
and Norway are stationary.

7. Conclusion

In this paper, we consider the bootstrap procedure for the covariate augmented Dickey-
Fuller (CADF) unit root test which substantially improves the power of univariate unit root
tests. Hansen (1995) originally proposed the CADF test and suggested a two-step procedure
to overcome the nuisance parameter dependency problem. Here, we propose bootstrapping
the CADF test in order to directly deal with the nuisance parameter dependency and base
inferences on the bootstrapped critical values. We also establish the bootstrap consistency
of the CADF test and show that the bootstrap CADF test is asymptotically valid.

The asymptotic properties of the CADF and bootstrap CADF tests are investigated and
the finte sample performances of the CADF tests are compared with various well-known
univariate unit root tests through simulations. The bootstrap CADF test significantly im-
proves the asymptotic and the finite sample size performances of the CADF test, especially
when the covariates are highly correlated with the error. Indeed, the bootstrap CADF
test offers drastic power gains over the conventional ADF and other univariate tests. As
illustrations, we apply the tests to the fourteen macroeconomic time series in the Nelson
and Plosser data set for the post-1929 samples as well as to postwar annual CPI-based real
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exchange rates for fifteen OECD countries. In contrast to the results from univariate unit
root tests, our empirical results show that the null hypothesis of a unit root is rejected for
more series by the CADF tests.

8. Appendix

Lemma A.1 Under Assumption 2.1, we have as n→∞

(a)
1√
n

[ns]∑
t=1

wt →d Ψ(1)Bη(s)

(b)
1√
n

[ns]∑
t=1

ut →d π(1)
(
β(1)′Ψ(1)Bη(s) +Bε(s)

)
for s ∈ [0, 1], where Ψ(1) = Φ(1)−1 and π(1) = 1/α(1).

Proof of Lemma A.1 To establish the stated results, we use the Beveridge-Nelson (BN)
representations for the finite order lag polynomials α(L), β(L) and Φ(L) defined in (2) and
(4) and the limit theory from the invariance principle given in (5).

Part (a) We begin by deriving the BN representation for (wt) from (4). Let Φ(1) =
Im −

∑`
k=1 Φk. Then we may easily get

Φ(1)wt = ηt−r−1 +
∑̀
k=1

∑̀
j=k

Φj (wt−k − wt−k+1)

or
wt = Ψ(1)ηt−r−1 + (w̄t−1 − w̄t), (33)

where Ψ(1) = Φ(1)−1 and w̄t =
∑`
k=1 Φ̄kwt−k+1, with Φ̄k = Ψ(1)

∑`
j=k Φj . Under our

condition in Assumption 2.1, (w̄t) is well defined both in a.s. and Lγ sense [see Brockwell
and Davis (1991, Proposition 3.1.1)]. Then we have

t∑
k=1

wk = Ψ(1)
t∑

k=1

ηk−r−1 + (w̄0 − w̄t).

Note that (w̄t) is stochastically of smaller order of magnitude than the sum
∑t
k=1 ηk, and

hence will become negligible in the limit. Then it follows directly from (5) that

1√
n

[ns]∑
t=1

wt = Ψ(1)
1√
n

[ns]∑
t=1

ηt−r−1 +
1√
n

(
w̄0 − w̄[ns]

)
→d Ψ(1)Bη(s)

for s ∈ [0, 1], giving the stated result in part (a).

Part (b) Let α(1) = 1 −
∑p
k=1 αk. Similarly, we derive the BN representation for (ut)

from (2) as follows

ut =
1

α(1)

(
β(L)′wt + εt

)
+

p∑
k=1

∑p
j=k αj

α(1)
(ut−k − ut−k+1)
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= π(1)
(
β(L)′wt + εt

)
+ (ūt−1 − ūt)

where π(1) = 1/α(1) and ūt =
∑p
k=1 ᾱkut−k+1, with ᾱk = π(1)

∑p
j=k αj . The process (ūt)

is also well defined both in a.s. and Lγ sense. We may also obtain the BN representation
for β(L)′wt as follows

β(L)′wt = β(1)′wt +
q−1∑
k=0

q∑
j=k+1

β′j(wt−k−1 − wt−k) +
r−1∑
k=0

r∑
j=k+1

β′−j(wt+k+1 − wt+k)

= β(1)′wt + (w̄+
t−1 − w̄

+
t ) + (w̄−t − w̄−t−1)

where w̄+
t =

∑q−1
k=0 β̄

+′
k wt−k and w̄−t =

∑r−1
k=0 β̄

−′
k wt+k+1, with β̄+k =

∑q
j=k+1 βj and β̄−k =∑r

j=k+1 β−j . The (w̄+
t ) and (w̄−t ) are well defined both in a.s. and Lγ sense.

Then it follows that

ut = π(1)
(
β(1)′wt + εt

)
+ π(1)

(
(w̄+

t−1 − w̄
+
t ) + (w̄−t − w̄−t−1)

)
+ (ūt−1 − ūt) (34)

and

1√
n

[ns]∑
t=1

ut = π(1)

β(1)′
1√
n

[ns]∑
t=1

wt +
1√
n

[ns]∑
t=1

εt

+ op(1)

since

1√
n

[ns]∑
t=1

(ūt−1 − ūt) =
1√
n

(ū0 − ū[ns]) = op(1)

1√
n

[ns]∑
t=1

(
(w̄+

t−1 − w̄
+
t ) + (w̄−t − w̄−t−1)

)
=

1√
n

(w̄+
0 − w̄

+
[ns]) +

1√
n

(w̄−[ns] − w̄
−
0 ) = op(1).

Now the stated result is immediate from the invariance principle given in (5) and the result
in part (a).

Lemma A.2 Under the null hypothesis α = 0, we have as n→∞,

(a) n−2
n∑
t=1

y2t−1 →d π(1)2
∫ 1

0
Q(s)2ds

(b) n−1
n∑
t=1

yt−1εt →d σεπ(1)

∫ 1

0
Q(s)dP (s)

under Assumption 2.1, where Q and P are defined in Theorem 2.3.

Proof of Lemma A.2 When α = 0, we have

yt = yt−1 + ut =
t∑

k=1

uk

since y0 = 0. Then it follows from Lemma A.1 (b) that

1√
n
y[ns] =

1√
n

[ns]∑
t=1

ut →d π(1)Q(s) (35)
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using the notation introduced in Theorem 2.3. The stated result in part (a) now follows
immediately from (36) and the continuous mapping theorem. For part (b), we also have
from (36) that

1

n

n∑
t=1

yt−1εt =
1√
n

n∑
t=1

yt−1√
n
εt

→d σεπ(1)

∫ 1

0
Q(s)dP (s)

as required, where P is the normalized Brownian motion of Bε, i.e., P = Bε/σε.

Proof of Theorem 2.3 We have from Lemma 2.1 of Park and Phillips (1989) that

n∑
t=1

ztz
′
t = Op(n),

n∑
t=1

ztεt = Op(n
1/2), and

n∑
t=1

yt−1z
′
t = Op(n).

Then it follows that∣∣∣∣∣∣
(

n∑
t=1

yt−1z
′
t

)(
n∑
t=1

ztz
′
t

)−1( n∑
t=1

ztεt

)∣∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
t=1

yt−1z
′
t

∣∣∣∣∣
∣∣∣∣∣∣
(

n∑
t=1

ztz
′
t

)−1∣∣∣∣∣∣
∣∣∣∣∣
n∑
t=1

ztεt

∣∣∣∣∣ = Op(n
1/2)

∣∣∣∣∣∣
(

n∑
t=1

yt−1z
′
t

)(
n∑
t=1

ztz
′
t

)−1( n∑
t=1

ztyt−1

)∣∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
t=1

yt−1z
′
t

∣∣∣∣∣
∣∣∣∣∣∣
(

n∑
t=1

ztz
′
t

)−1∣∣∣∣∣∣
∣∣∣∣∣
n∑
t=1

ztyt−1

∣∣∣∣∣ = Op(n)

∣∣∣∣∣∣
(

n∑
t=1

εtz
′
t

)(
n∑
t=1

ztz
′
t

)−1( n∑
t=1

ztεt

)∣∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
t=1

εtz
′
t

∣∣∣∣∣
∣∣∣∣∣∣
(

n∑
t=1

ztz
′
t

)−1∣∣∣∣∣∣
∣∣∣∣∣
n∑
t=1

ztεt

∣∣∣∣∣ = op(n).

Hence,

n−1An = n−1
n∑
t=1

yt−1εt + op(1)

n−2Bn = n−2
n∑
t=1

y2t−1 + op(1)

n−1Cn = n−1
n∑
t=1

ε2t + op(1).

Under the null, α = 0 and we have from (9) that

Sn =
nB−1n An
α̂n(1)

=
1

α̂n(1)


n−1

n∑
t=1

yt−1εt

n−2
n∑
t=1

y2t−1

+ op(1) →d σε

∫ 1

0
Q(s)dP (s)∫ 1

0
Q(s)2ds
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as required, due to Lemma A.2. Similarly, the stated limit distribution of Tn follows directly
from (10) and Lemma A.2 as

Tn =
1

σ̂n

(
An

B
1/2
n

)
=

1

σ̂n


n−1

n∑
t=1

yt−1εt(
n−2

n∑
t=1

y2t−1

)1/2

+ op(1) →d

∫ 1

0
Q(s)dP (s)(∫ 1

0
Q(s)2ds

)1/2

since σ̂2n →p σ
2
ε and π(1) = 1/α(1).

For the derivation of the limit distributions for the bootstrap CADF tests S∗n and T ∗n , we
rely on the invariance principles for the bootstrapped samples, which are analogous to those
derived for the original samples in Lemma A.1. We will use the symbol o∗p(1) to signify the
bootstrap convergence in probability. For a sequence of bootstrapped random variables Z∗n,
for instance, Z∗n = o∗p(1) a.s. and in P imply respectively that

P∗{|Z∗n| > δ} → 0 a.s. or in P

for any δ > 0. Similarly, we will use the symbol O∗p(1) to denote the bootstrap version of
the boundedness in probability. Needless to say, the definitions of o∗p(1) and O∗p(1) naturally
extend to o∗p(cn) and O∗p(cn) for some nonconstant numerical sequence (cn). Many of well
known results for op and Op extend to o∗p and O∗p and are provided in Lemma 3.1 of Chang
and Park (2003).

For a sequence of bootstrapped statistics (Z∗n) which weakly converges a.s. (or in P),
it follows that Z∗n = O∗p(1) a.s. (or in P). Moreover, if Z∗n →d∗ Z a.s. (or in P), then
Z∗n + Y ∗n →d∗ Z a.s. (or in P) for any (Y ∗n ) such that Y ∗n = o∗p(1) a.s. (or in P). For further
discussions on bootstrap asymptotics, the reader is referred to Park (2002) and Chang and
Park (2003).

Lemma A.3 Under Assumption 2.1, we have

(a)
1√
n

[ns]∑
t=1

w∗t →d∗ Ψ(1)Bη(s)

(b)
1√
n

[ns]∑
t=1

u∗t →d∗ π(1)
(
β(1)′Ψ(1)Bη(s) +Bε(s)

)
as n→∞.

Proof of Lemma A.3 Under Assumption 2.1, the following invariance principle for (ξ∗t ) =
(ε∗t , η

∗′
t )′ holds:

1√
n

[ns]∑
t=1

ξ∗t →d∗ B =

(
Bε
Bη

)
(36)

as n→∞ due to Theorem 3.3 of Chang, Park and Song (2006). As in the proof of Lemma
A.1, we use the BN representations for the bootstrapped series (w∗t ), (v∗t ) and (u∗t ) to derive
the limit distributions of their partial sum processes.
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Part (a) Let Φ̃n(1) = Im−
∑`
k=1 Φ̃k,n, where Φ̃k,n’s are the coefficient estimates from the

fitted regression (15), and define

Ψ̃n(1) = Φ̃n(1)−1.

We may derive the BN representations for (w∗t ) from the fitted autoregression (15) as we
did for (wt) in (34) as

w∗t = Ψ̃n(1)η∗t−r−1 + (w̄∗t−1 − w̄∗t ), (37)

where w̄∗t =
∑`
k=1(Ψ̃n(1)

∑`
j=k Φ̃j,n)w∗t−k+1. Then the stated result in part (a) follows di-

rectly from the invariance principle (37) as

1√
n

[ns]∑
t=1

w∗t = Ψ̃n(1)
1√
n

[ns]∑
t=1

η∗t−r−1 +
1√
n

(w̄∗0 − w̄∗[ns]) →d∗ Ψ(1)Bη(s)

as n→∞, since Ψ̃n(1)→a.s. Ψ(1) and n−1/2(w̄∗0 − w̄∗[ns]) = o∗p(1).

Part (b) Define

π̃n(1) = α̃n(1)−1 and β̃n(1) =
q∑

k=−r
β̃k,

where α̃n(1) is defined as in (22) and β̃k’s are the estimates from (14). Now we derive the
BN representation for (u∗t ) from the fitted regression (14) similarly as in (35) as

u∗t = π̃n(1)
(
β̃n(1)′w∗t + ε∗t

)
+ π̃n(1)

(
(w̃∗+t−1 − w̃

∗+
t ) + (w̃∗−t − w̃∗−t−1)

)
+ (ū∗t−1 − ū∗t ), (38)

where

ū∗t = π̃n(1)
p∑

k=1

( p∑
i=k

α̃i

)
u∗t−k+1

w̃∗+t =
q−1∑
k=0

β̃+′k w
∗
t−k

w̃∗−t =
r−1∑
k=0

β̃−′k w
∗
t+k+1

with β̃+k =
∑q
j=k+1 β̃j and β̃−k =

∑r
j=k+1 β̃−j . Note that π̃n(1) →a.s. π(1) and β̃n(1) →a.s.

β(1). Then the stated result follows as

1√
n

[ns]∑
t=1

u∗t = π̃n(1)

β̃n(1)′
1√
n

[ns]∑
t=1

w∗t +
1√
n

[ns]∑
t=1

ε∗t

+ o∗p(1)

→d∗ π(1)
(
β(1)′Ψ(1)Bη(s) +Bε(s)

)
due to (37) and the result in part (a).
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Lemma A.4 Under the null hypothesis α = 0, we have as n→∞

(a) n−2
n∑
t=1

y∗2t−1 →d∗ π(1)2
∫ 1

0
Q(s)2ds a.s.

(b) n−1
n∑
t=1

y∗t−1ε
∗
t →d∗ σεπ(1)

∫ 1

0
Q(s)dP (s) in P

under Assumption 2.1, where Q(s) and P (s) are defined in Theorem 2.3.

Proof of Lemma A.4 From (19), we have

1√
n
y∗[ns] =

1√
n

[ns]∑
t=1

u∗t +
y∗0√
n
.

Then the stated result in Part (a) follows directly from Lemma A.3 (b) and the continuous
mapping theorem, since n−1/2y∗0 = o∗p(1).

To prove Part (b), we first write the partial sum of (u∗t ) explicitly using the BN decom-
position given in (39) as

t∑
k=1

u∗k = π̃n(1)
t∑

k=1

(
β̃n(1)′w∗k + ε∗k

)
+ π̃n(1)

(
(w̃∗+0 − w̃

∗+
t ) + (w̃∗−t − w̃∗−0 )

)
+ (ū∗0 − ū∗t ).

Then, we use this to write

1

n

n∑
t=1

y∗t−1ε
∗
t =

1

n

n∑
t=1

(
t−1∑
k=1

u∗k + y∗0

)
ε∗t

= R1n +R2n +R3n +R4n +R5n +R6n (39)

where

R1n = π̃n(1)
1

n

n∑
t=1

(
t−1∑
k=1

β̃n(1)′w∗k

)
ε∗t

R2n = π̃n(1)
1

n

n∑
t=1

(
t−1∑
k=1

ε∗k

)
ε∗t

R3n = π̃n(1)
1

n

n∑
t=1

(w̃∗+0 − w̃
∗+
t−1)ε

∗
t

R4n = π̃n(1)
1

n

n∑
t=1

(w̃∗−t−1 − w̃
∗−
0 )ε∗t

R5n =
1

n

n∑
t=1

(ū∗0 − ū∗t−1)ε∗t

R6n = y∗0
1

n

n∑
t=1

ε∗t .
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To study the limit behavior of R1n, we use the BN decomposition of (w∗t ) given in (38)
to write it more explicitly as

R1n = π̃n(1)
1

n

n∑
t=1

(
t−1∑
k=1

β̃n(1)′
(
Ψ̃n(1)η∗k−r−1 + (w̄∗k−1 − w̄∗k)

))
ε∗t

= Ra1n +Rb1n (40)

where

Ra1n = π̃n(1)
1

n

n∑
t=1

(
t−1∑
k=1

β̃n(1)′Ψ̃n(1)η∗k−r−1

)
ε∗t

Rb1n = π̃n(1)
1

n

n∑
t=1

β̃n(1)′
(
w̄∗0 − w̄∗t−1

)
ε∗t .

For the first part Ra1n, we note from the invariance principle given in (37) that

1√
n

[ns]∑
k=1

β̃n(1)′Ψ̃n(1)η∗k−r−1 →d∗ β(1)′Ψ(1)Bη(s) a.s.

1√
n

[ns]∑
k=1

ε∗k →d∗ Bε(s) a.s. (41)

where s is such that [ns] = t− 1. Then it follows that

Ra1n →d∗ π(1)

∫ 1

0
(β(1)′Ψ(1)Bη(s))dBε(s) in P (42)

due to Kurtz and Protter (1991).
For Rb1n, we first note that

E∗
(

1

n

n∑
t=1

ε∗t

)2

=
1

n
E∗ε∗2t =

1

n

(
1

n

n∑
t=1

(ε̃t − ε̄n)

)2

→a.s 0 (43)

due to Assumption 2.1. Then, it follows from (4), Assumption 2.1 and (44) that

E∗
(

1

n

n∑
t=1

w̄∗t−1ε
∗
t

)2

=
1

n
E∗
(
w̄∗t−1ε

∗
t

)2
=

1

n
E∗
(
E∗
(
w̄∗t−1ε

∗
t

)2 |F t−1)
=

1

n
E∗w̄∗2t−1E

∗ε∗2t →a.s. 0 (44)

and that

E∗
(

1

n

n∑
t=1

w̄∗0ε
∗
t

)2

= w̄∗20
1

n
E∗ε∗2t →a.s. 0. (45)

28



The above results imply that

1

n

n∑
t=1

w̄∗t−1ε
∗
t ,

1

n

n∑
t=1

w̄∗0ε
∗
t = o∗p(1)

which in turn implies Rb1n = o∗p(1). Now we may deduce from (41) and (43) that

R1n →d∗ π(1)

∫ 1

0
(β(1)′Ψ(1)Bη(s))dBε(s) in P. (46)

From (42), we have

R2n →d∗ π(1)

∫ 1

0
Bε(s)dBε(s) in P (47)

again due to Kurtz and Protter (1991).
As in (45), we may similarly show that

1

n

n∑
t=1

w̃∗+t−1ε
∗
t ,

1

n

n∑
t=1

w̃∗−t−1ε
∗
t ,

1

n

n∑
t=1

u∗t−1ε
∗
t = o∗p(1)

and as in (46) we may also show that

w̃∗+0
1

n

n∑
t=1

ε∗t , w̃
∗−
0

1

n

n∑
t=1

ε∗t , ū
∗
0

1

n

n∑
t=1

ε∗t , y
∗
0

1

n

n∑
t=1

ε∗t = o∗p(1).

Then we may deduce that
R3n, R4n, R5n, R6n = o∗p(1)

which together with the results in (40), (47) and (48) proves the stated result.

Proof of Theorem 3.3 The stochastic orders for the bootstrap sample moments appear-
ing in the definitions of the bootstrap test S∗n and T ∗n are easily obtained∣∣∣∣∣∣

(
n∑
t=1

z∗t z
∗′
t

)−1∣∣∣∣∣∣ = O∗p(n
−1),

∣∣∣∣∣
n∑
t=1

z∗t ε
∗
t

∣∣∣∣∣ = O∗p(n
1/2) and

∣∣∣∣∣
n∑
t=1

y∗t−1z
∗′
t

∣∣∣∣∣ = O∗p(n)

from the results in Lemma 3 of Chang and Park (2003). Then we have∣∣∣∣∣∣
(

n∑
t=1

y∗t−1z
∗′
t

)(
n∑
t=1

z∗t z
∗′
t

)−1( n∑
t=1

z∗t ε
∗
t

)∣∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
t=1

y∗t−1z
∗′
t

∣∣∣∣∣
∣∣∣∣∣∣
(

n∑
t=1

z∗t z
∗′
t

)−1∣∣∣∣∣∣
∣∣∣∣∣
n∑
t=1

z∗t ε
∗
t

∣∣∣∣∣ = O∗p(n
1/2)

∣∣∣∣∣∣
(

n∑
t=1

y∗t−1z
∗′
t

)(
n∑
t=1

z∗t z
∗′
t

)−1( n∑
t=1

z∗t y
∗
t−1

)∣∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
t=1

y∗t−1z
∗′
t

∣∣∣∣∣
∣∣∣∣∣∣
(

n∑
t=1

z∗t z
∗′
t

)−1∣∣∣∣∣∣
∣∣∣∣∣
n∑
t=1

z∗t y
∗
t−1

∣∣∣∣∣ = O∗p(n)
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and consequently

n−1A∗n = n−1
n∑
t=1

y∗t−1ε
∗
t + o∗p(1)

n−2B∗n = n−2
n∑
t=1

y∗2t−1 + o∗p(1).

Note that α̃n(1) →a.s. α(1) and σ̃2n →a.s. σ
2
ε . Then it follows from the definitions of S∗n

and T ∗n , given in (23) and (24), and the results in the previous equation that

S∗n =
nB∗−1n A∗n
α̃n(1)

=
1

α̃n(1)


n−1

n∑
t=1

y∗t−1ε
∗
t

n−2
n∑
t=1

y∗2t−1

+ o∗p(1)

T ∗n =
1

σ̃n

(
A∗n

B
∗1/2
n

)
=

1

σ̃n


n−1

n∑
t=1

y∗t−1ε
∗
t(

n−2
n∑
t=1

y∗2t−1

)1/2

+ o∗p(1).

Now the stated limit theories for S∗n and T ∗n follow immediately from Lemma A.4.

Proof of Theorem 4.1 Given the results in Lemmas A.3 and A.4, the proof is essentially
identical to the proof of Theorem 4.1 in Park (2003).
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Table 1. Estimates of ρ2 for Various n (α = 1)

β φ 25 50 100 1, 000 3, 000 true ρ2

0.800 0.800 0.359 0.320 0.306 0.307 0.314 0.335
0.500 0.800 0.492 0.453 0.428 0.413 0.416 0.432
-0.500 0.800 0.302 0.243 0.206 0.103 0.070 0.000
-0.800 0.800 0.139 0.068 0.036 0.003 0.002 0.026

0.800 0.500 0.522 0.524 0.530 0.547 0.550 0.556
0.500 0.500 0.671 0.688 0.691 0.696 0.696 0.700
-0.500 0.500 0.595 0.615 0.635 0.614 0.569 0.300
-0.800 0.500 0.327 0.329 0.322 0.241 0.193 0.057

0.800 -0.500 0.685 0.722 0.743 0.816 0.836 0.860
0.500 -0.500 0.816 0.833 0.844 0.879 0.905 0.932
-0.500 -0.500 0.781 0.831 0.850 0.878 0.882 0.890
-0.800 -0.500 0.608 0.642 0.669 0.702 0.710 0.722

0.800 -0.800 0.733 0.816 0.850 0.876 0.886 0.893
0.500 -0.800 0.831 0.881 0.913 0.938 0.944 0.950
-0.500 -0.800 0.798 0.862 0.891 0.907 0.918 0.924
-0.800 -0.800 0.625 0.702 0.745 0.771 0.790 0.803

0.000 0.000 0.932 0.974 0.988 0.999 1.000 1.000

Note: The results for n = 25, 50, and 100 are based on 3,000 simulation iterations and those for

n = 1, 000 and 3, 000 are based on 1,000 simulation iterations.
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Table 2. Asymptotic Sizes (α = 1)

n = 1, 000 n = 3, 000

β φ CADF BCADF ρ̂2 CADF BCADF ρ̂2 true ρ2

0.800 0.800 0.062 0.062 0.307 0.064 0.068 0.314 0.335
0.500 0.800 0.059 0.063 0.413 0.057 0.057 0.416 0.432
-0.500 0.800 0.018 0.051 0.103 0.014 0.051 0.070 0.000
-0.800 0.800 0.010 0.053 0.003 0.007 0.047 0.002 0.026

0.800 0.500 0.052 0.056 0.547 0.058 0.064 0.550 0.556
0.500 0.500 0.053 0.056 0.696 0.057 0.062 0.696 0.700
-0.500 0.500 0.038 0.068 0.614 0.030 0.057 0.569 0.300
-0.800 0.500 0.023 0.051 0.241 0.036 0.063 0.193 0.057

0.800 -0.500 0.058 0.058 0.816 0.051 0.054 0.836 0.860
0.500 -0.500 0.063 0.058 0.879 0.060 0.062 0.905 0.932
-0.500 -0.500 0.057 0.063 0.878 0.059 0.064 0.882 0.890
-0.800 -0.500 0.054 0.062 0.702 0.054 0.060 0.710 0.722

0.800 -0.800 0.043 0.047 0.876 0.043 0.047 0.886 0.893
0.500 -0.800 0.058 0.062 0.938 0.041 0.050 0.944 0.950
-0.500 -0.800 0.065 0.074 0.907 0.061 0.070 0.918 0.924
-0.800 -0.800 0.041 0.046 0.771 0.060 0.071 0.790 0.803

0.000 0.000 0.049 0.048 0.999 0.049 0.058 1.000 1.000

Note: The results are based on 1,000 simulation iterations with the bootstrap critical values com-

puted from 1,000 bootstrap repetitions.
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