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Abstract 

This paper considers two models for uncovering information about technical change in 
large heterogeneous panels. The first is a panel data model with nonparametric time effects. 
Second, we consider a panel data model with common factors whose number is unknown and 
their effects are firm-specific. This paper proposes a Bayesian approach to estimate the two 
models. Bayesian inference techniques organized around MCMC are applied to implement 
the models. Monte Carlo experiments are performed to examine the finite-sample 
performance of this approach, which dominates a variety of estimators that rely on parametric 
assumptions. In order to illustrate the new method, the Bayesian approach has been applied to 
the analysis of efficiency trends in the U.S. largest banks using a dataset based on the Call 
Report data from FDIC over the period from 1990 to 2009. 
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1. Introduction 

   In this paper, we consider two panel data models with unobserved heterogeneous 

time-varying effects, one with individual effects treated as random functions of time, the other 

with common factors whose number is unknown and their effects are firm-specific. This paper 

has two distinctive features and can be considered as a generalization of traditional panel data 

models. Firstly, the individual effects that are assumed to be heterogeneous across units as 

well as to be time varying are treated nonparametrically, following the spirit of the model from 

Bai (2009) and Kneip et al. (2012), and Ahn et al. (2013).  For an extended discussion of 

these and other models used in panel work in the productivity field see Sickles, Hsiao, and 

Shang (2013).  

   The other aspect of our generalization is that we propose a Bayesian framework to estimate 

the two panel data models. There are several advantages of the Bayesian approach. First, 

following the Bayesian perspective of random coefficient models, (Swamy (1970); Swamy 

and Tavlas (1995) the model in this paper will not subjectively assume a common functional 

form for all the individuals as the subjective processes may vary among individuals and fixed 

parametric values of the parameters that describe this functional relationship may not be 

well-defined. Moreover, a Bayesian approach may circumvent the theoretically complex as 

well as the computationally intense nature of nonparametric or semiparametric regression 

techniques (Yatchew, 1998) and the need to rely on asymptotic theory for inference (Koop and 

Poirier, 2004). 

The literature incorporating a Bayesian approach to panel data models with applications in 

stochastic frontier analysis has been growing in the last two decades. The approach was first 

suggested by Van den Broeck et al. (1994), which considers a Bayesian approach under the 

composed error model. Koop et al. (1997) has established a Bayesian setting where the fixed 

and random effect models are defined; they also applied Gibbs Sampling to analyze their 

model. Bayesian numerical integration methods are described in Osiewalski and Steel (1998) 

and used to fully perform the Bayesian analysis of the stochastic frontier model using both 

cross-sectional data and panel data. However, the individual effects are assumed to be 

time-invariant in the papers listed above, which is inappropriate in many settings; for example, 
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in the stochastic frontier analysis, the technical inefficiency levels typically adjust over time. 

In order to address the temporal behavior of individual technical efficiency effects, Tsionas 

(2006) considers a dynamic stochastic frontier model using Bayesian inference, where the 

inefficiency levels are assumed to evolve log-linearly. In the same spirit as Tsionas (2006), our 

paper will also use the Bayesian integration method and a Markov chain based sampler or 

Gibbs sampler to provide slope parameter and heterogeneous individual effects inferences. By 

drawing sequentially from a series of conditional posteriors, a sequence of random samples 

can be obtained, which will converge to a draw from the joint posterior distribution. 

Additionally, a desirable characteristic of the Bayesian analysis in this paper is that no 

conjugate priors are imposed for the individual effects; i.e. we do not require effects to follow 

a normal prior distribution to ensure that the posterior are in the same family of the prior as 

with the conjugate prior assumption imposed in classical Bayesian linear regression model. 

The prior assumption is only imposed on the first-order or second-order difference of the 

individual effects; therefore, this approach can be applied to more general cases. One of the 

primary differences of this paper from Tsionas (2006) is that no parametric form is assumed 

on the evolvement of the effects; or the effects are treated nonparametrically. It will be shown 

in Section 4 that the Bayesian estimators proposed here consistently outperforms some 

representative parametric as well as nonparametric estimators under various scenarios of data 

generating processes. 

The rest of this paper is organized as follows. Section 2 describes the first model setup and 

parameter priors. The Bayesian inference procedures are explained in section 3. Section 4 

introduces the second model and the corresponding Bayesian inferences, followed by section 

5, which presents our Monte Carlo simulations results. The estimation of the translog distance 

function is briefly discussed and the empirical application results of the Bayesian estimation 

of the multi-output/multi-input technology employed by the U.S. banking industry in 

providing intermediation services are presented in section 6. Section 7 provides concluding 

remarks. 
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2. Model 1: A Panel Data Model with Nonparametric Time Effects 

The first model in this paper is based on a balanced design with T observations for n 

individual units. Thus, the observations in the panel can be represented in the form

( , ), 1,..., ; 1,...,it ity x i n t T= = , where the index i denotes the ith individual units, and the 

index t denotes the tth time period.  

A panel data model with heterogeneous time-varying effects is expressed as  

  ' ,  1,..., ; 1,...,it it i itY X t v i n t T       (2.1) 

where itY  is the response variable, itX  is a 1p×  vector of explanatory variable, β  is a 

1p×  vector of parameters, and the unit specific function of time  i t  is a nonconstant and 

unknown individual effect. We make the standard assumption for the measurement error that

2(0, )itv NID  . 

The model can also be written in the form below, 

 '
it it it itY X v     (2.2) 

where it is the time-varying heterogeneity and assumed to be independent across units. This 

assumption is quite reasonable in many applications, particularly in production/cost stochastic 

frontier models where the effects are measuring the technical efficiency levels. A firm’s 

efficiency level primarily relies on its own factors such as its executives’ managerial skills, 

firm size and operational structure etc. and should thus be heterogeneous across firms. These 

factors are usually changing over time and so does the firm’s efficiency level; therefore, it 

makes more sense to assume the efficiency level to be time varying too.  

For the ith individual, the vector-form expression is presented as:  

 ,  1,...,i i i iY X v i n      (2.3) 

where ,  i iY X and iγ  are vectors of T dimension. 

When applying our model into the field of stochastic frontier analysis, the estimation of 

and inference on the individual effects    or i itt  , which represent the time-varying 
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technical efficiency levels, will be as important as that of the slope parameters.  

The difference of our model from those using Bayesian approaches in the literature is that 

no specific parametric form for the prior of the unobserved heterogeneous individual effects is 

imposed. Instead of resorting to the classical nonparametric regression techniques as they did 

in (Kneip et al., 2012),  a Markov Chain Monte Carlo algorithm is implemented in the 

Bayesian inference to estimate the model. This paper can be considered as a generalization of 

Koop and Poirier (2004) to the case of panel data including both individual-specific and 

time-varying effects. Moreover, it does not rely on the conjugate prior formulation for the 

time varying individual-effects, which can be too restrictive and undesirable.  

   A Bayesian analysis of the panel data model set up above requires a specification of the 

prior distributions over the parameters (γ, β, σ) and computation on the posterior using 

Bayesian learning process: 

    , , | , , , , ( , ; , , )p Y X p l Y X            (2.4) 

The prior of the individual effect γi as expressed below is not strictly assumed to follow a 

normal distribution; instead, it is only assumed that the first-order or second-order difference 

of γi follows a normal prior. 

    1 2 2

1
exp exp

2 2

n i i
ni

Q
p I Q

 
  

 

                 
  (2.5) 

where Q D D , and D  is the  1T T   matrix whose elements are 1ttD  , for t 

=1,…,T−1; 1, 1t tD     for all t = 2,…,T and zero otherwise. The information implied by this 

prior is that𝛾𝑖,𝑡 − 𝛾𝑖,𝑡−1~𝑁(0,𝜔2), or  2
1~ 0,

IID
i TD N I   . ω is a smoothness parameter 

which stands for the degree of smoothness. ω can be considered as a hyperparameter, or it can 

be assumed to have its own prior, which is explained in next session. Given the continuity and 

first-order differentiability of ( )i tϕ , this assumption says that the first derivative of the 

time-varying function ( )i tϕ in Eq.(2.1) is a smooth function of time. The second-order 

differentiability assumption can be an alternative, which is implied by 

 2
, 1 , 22 ~ 0,it i t i t N       or    2 2

1~ 0,
IID

i TD N I    and (2)' (2)Q D D . 
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   A noninformative prior distribution is assumed here for the joint prior distribution of the 

slope parameter β and the unknown variance term σ2 in Eq.(2.6). 

 1( , )p β σ σ −∝  (2.6) 

or equivalently the prior distribution is uniform on ( , log )β σ . 

Therefore, with the assumptions on the priors above, we have adopted the following form 

for the joint prior: 

    1 1
1 2 2

1
, , exp exp

2 2

n i i
ni

Q
p I Q

 
      

 
 



                 
  (2.7) 

   After a specific dataset is applied, the likelihood function under this model is the following 

expression, 

 
2

1( , ; , , ) exp{ ( ) '( )}
2

NTl Y X Y X Y Xβ γ σ σ β γ β γ
σ

−∝ − − − − −  (2.8) 

The likelihood is formed by the product of NT independent disturbance terms which follow 

normal distribution N (0, σ2). 

With Bayes’ Theorem applied, the probability density function is updated utilizing the 

information from the dataset, thus the joint posterior distribution is derived in Eq.(2.9). 

 
       

 

1

2

2

1
, , | , , exp{ }

2
1

                           exp{ }
2

nT

n

p Y X Y X Y X

I Q

        


 


       

  
 (2.9) 

   To proceed with further inference, we need to solve the posterior above in Eq.(2.9) 

analytically; however, this posterior is not of standard form, and taking draws directly from it 

is problematic. Therefore, Markov Chain Monte Carlo techniques are considered to 

implement the inference for the model. Specifically, Gibbs sampling will be used to perform 

the Bayesian inference. The Gibbs sampler is commonly used under Bayesian inference 

because of the desirable results that iterative sampling from the conditional distributions will 

lead to a sequence of random variables converging to the joint distribution. A general 

discussion on the use of Gibbs sampling is provided in Gelfand and Smith (1990), in which 

Gibbs sampler is also compared with alternative sampling-based algorithms. For more 

detailed discussion on Gibbs sampling, one can refer to Gelman et al. (2003). Gibbs sampling 
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can be well-adapted to sampling the posterior distributions here since a collection of 

conditional posterior distributions are easily derived. 

  The Gibbs sampling algorithm used in this paper generates a sequence of random samples 

from the conditional posterior distributions of each parameter, in turn conditional on the 

current values of the other parameters, and it thus generate a sequence of samples that 

constitute a Markov Chain, where the stationary distribution of that Markov chain is just the 

desired joint distribution of all the parameters.  

 In order to derive the conditional posterior distributions of β, γ and σ, rewrite the 

likelihood function in Eq.(2.8) to the following form. 

 
   

2

2

1
( | , , ) exp{ ( )'( )}

2
1

exp{ [( ) '( ) ( ) '( ' )( )]}
2

NT

NT

p Y Y X Y X

Y X Y X X X

       


        






     

        
  (2.10) 

where    1ˆ X X X Y 
   . 

   The joint posterior can thus be rewritten in the form below: 

 
     

   

1

2

2

1
, , | , , exp{ }

2
1

exp{ [( ) '( ) ( ) '( ' )( )]}
2

nT
np Y X I Q

Y X Y X X X

      


       


    

        
 (2.11) 

   Thus, the conditional distribution of β follows the multivariate normal distributions with 

mean ̂  and covariance matrix   12 X X
 since the following distribution is derived from 

Eq.(2.11). 

    

2

1
| , , , , exp{ ( )'( ' )( )}

2
p Y X X X       


     (2.12) 

 

   12ˆ| , , , , | ,  kY X f X X      
  (2.13) 

In order to derive the conditional distribution of the individual effect i , rewrite the joint 

posterior distribution in the following way: 

 

 
       

     

1

2 2

1
1 12 2

, , | , ,

1 1
exp{ }

2 2
1 1

exp{ ' }
2 2

nT
n

n nnT
i i i i i i i ii i

p Y X

Y X Y X I Q

Y X Y X Q

   

      
 

      
 

 

 
 



        

      

 (2.14) 
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Therefore, under the assumption that the effect i ’s are independent across individuals, 

the conditional posterior distribution of  | , , , , , ,i j j i Y X      is the same as that of

| , , , ,i Y X    , and it is distributed as a multivariate normal with mean î  and covariance 

matrix V as displayed in Eq.(2.15). The detailed derivation is presented in Appendix A.  

    2 2ˆ| , , , , , , ~ | , , , , | ,  i j i T i ij i Y X Y X f V               (2.15) 

where  2
î i iV y X     and   12 2

TV Q I     for 1,...,i n . 

   Writing the conditional posterior distribution in the form given by Eq.(2.16), it is clear that the 

sum of the squared residuals over the unobserved variance     2/Y X Y X         

has the a Chi-squared distribution with nT degree of freedom as shown in Eq.(2.17). 

      2 2 /2 1
2

1
| , , , , ( ) exp{ }

2
nTp Y X Y X Y X        


         (2.16) 

 
    2

2
| , , , , nT

Y X Y X
Y X

   
   



   
  (2.17) 

If the smoothing parameter ω is also assumed to follow its own prior instead of being 

treated as constantly, its conditional posterior distribution can also be derived. Supposed

2
2 ~ n

q



, where ,  0n q  hyperparameters, the conditional posterior distribution of 2  is 

derived as: 

 1 1 2
2 2

| , , , , ~ | , , ~

n n
i i i ii i

n n

q Q q Q
Y X Y X

   
    

 
 



     (2.18) 

Obviously, the hyperparameters n  and q  control the prior degree of smoothness that is 

imposed upon the it s. Generally, small values of the prior “sum of squares” /q n  

correspond to smaller values of   and thus a higher degree of smoothness.  

   Alternatively, we can choose the smoothing parameter ω with cross validation under a 

Bayesian context, which is similar to that in a classical nonparametric regression. The basic 

idea of the cross validation method is to leave the data points out one at a time and to choose 

the value of the smoothing parameter, under which the missing value points are best predicted, 

by the remainder of the data points. 

Let  , ,      . The posterior distribution for a specific value of the smoothing 
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parameter is      | , ; |p Y L Y p     . If we omit the block of time observations for unit

i , we have the posterior      | , ; |i i i i ip Y L Y p         . Suppose now we have a set 

of draws  ( )
, , 1,...,s
i s S   from | ,i iY   . It is easy to compute the posterior means

 1
, ,1

S s
i is

S  
 

   and, as a result, the cross validation statistic is 

 1
, , , ,1

( ) ( ) ( ) ( )
n

i i i i i i i ii
CV nT y X y X       

   
      (2.19) 

The problem is that we do not have draws from | ,i iY    but only from | ,Y  . 

However, the posteriors  | ,i ip Y    and  | ,p Y   should be fairly close. Therefore, to 

produce such draws we use the method of sampling importance resampling (SIR): if a sample 

 ( ), 1,...,s s S   from a distribution with kernel density ( )g   is available and if the existing 

sample is resampled with probabilities  
 

( ) ( )

( ) ( )
1

( ) /

( ) /

s s

s S r r
r

f g
W

f g

 

 





, for 1,...,s S , then it can 

be transformed to a distribution with kernel ( )f  , In our context, the existing sample from 

 | ,p Y   is transformed to an approximate sample from  | ,i ip Y    using

   ( ) ( ) ( ) ( )( ) ( ) ( )
( )2 2

1 1
exp

2 2
s s s ss T s s

s i i i i i i i is
w y X y X Q      

 

          
, and 

1
/

S
s s rr

W w w


  . The size of the resample is set to 20% of the original sample. For each 

specific value of  , the posteriors  | ,i ip Y    are simulated using SIR for each 

1,...,i n , and the value of   that yields the minimum of ( )CV   is determined. 

A useful byproduct of this approach is that it yields samples  ( ) ( ) ( ), ,s s s
i i i     , which 

represent all the parameters except one individual block i. These samples and the posteriors 

approximated can be useful when sensitivity analysis with respect to the observations is 

necessary.   

This paper uses a Gibbs sampler to draw observations from the conditional posteriors from 

Eq.(2.13) to Eq.(2.17) with data augmentation. Draws from these conditional posteriors will 

eventually converge to the joint posterior in Eq.(2.9). Since the conditional posterior 

distribution of β follows the multivariate normal distribution displayed in Eq.(2.13), it will be 

straightforward to sample from it. 

For the individual effects i , sampling is also straightforward since its conditional posterior 
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follows a multivariate normal distribution with mean vector î  and covariance matrix 

2 2V  as expressed in Eq.(2.15). 

 Finally, to draw samples from the conditional posterior distribution function for the 

unobserved variance of the measurement error σ term, we have two simple steps. Firstly, we 

can draw samples directly from that of     2/Y X Y X        , which is shown 

in Eq.(2.16) to follow a chi-squared distribution with degree of freedom nT. Secondly, assign 

the values of     /Y X Y X Chi rnd        to 2 , where Chi rnd is the 

generated random variable that follows 2
nT  in the first step. 

 

3. Model 2: A Panel Data Model with Factors  

    We consider another panel data model, where the effects are treated as linear combination 

of unknown basis functions or factors.                      

 
1

G
it it t i it it tg ig itg

y x v x v     


          (3.1) 

where t  is a 1G   vector of common factors, and i  is a 1G   vector of 

individual-specific factor loadings. For the i th individual we have 

 
           1 1 1 1

,  1,2,...,i i i i
T T k k T G G T

y X v i n 
     

       (3.2) 

For the t th time period we have      

 
           1 1 1 1

,    1,2,...t t t t
n n k k n G G n

y X v t T 
     

       (3.3) 

for each 1,...,t T , where 
1

 

T





  
 
  
 
   

 , and 
1

 

n





  
 
  
 
   

 .  

   If we set 1 1tφ = , then itγ  acts as an individual-specific intercept. Effectively, the first 

column of   contains ones. The model for all observations can be written as

   n TY X I v X I            , where  vec   , and  vec   . 

   This model setting follows that in Kneip et al. (2012), and it satisfies the structural 

assumption, which is Assumption 1 from that paper. 

Assumption 1:  For some fixed {0,1,2,...}G T∈ < , there exists a G-dim space TL , such that 
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( ) 'i t itϕ φ γ=  holds for with probability 1. 

   We define the priors similarly to Model 1. Regarding the slope parameter   and variance 

of the noise term , we still assume a noninformative prior   1,p    . For the common 

factors it is reasonable to assume 

   1 11
1 2 2 2

( ) ( ) 1
, ,..., exp exp

2 2

T
t t t tt

Tp tr Q
   

  
 
 

                  

   (3.4)   

   This assumption is consistent with the idea that common factors evolve “smoothly” over 

time, and the degree of smoothness is controlled by the parameter  and 0 0φ = . For the 

loadings we can assume  ~ ,
IID

i GN   . An alternative is to avoid the proliferation of factors 

by constraining stochastically the loadings to approach zero in the following sense: If 

 
    1 ,..., G

n G
 


  , then    2

1 ~ ,n nN I   ,    2~ ,  g g
g nN     , for 1,...,g G ,  

and ,   are parameters between zero and one. 

The posterior kernel distribution is 

   
 

 
2

1 11 1 1 2
2 2 1

( ) ( )
, , , | , exp |

2 2

n T T
it it t i t t t t nnT i t t

ii

y x
p Y X p

      
      

 
     



          
  

     (3.5) 

where   denotes any hyperparameters that are present in the prior of i s. When 

 ~ ,
IID

i GN    we have 

 

   

     

2
1 11 1 1 1

2 2

/2 1
1

                                     , , , , , | ,

( ) ( )
exp

2 2

1
            exp ,

2

n T T
it it t i t t t tnT i t t

n n
i ii

p Y X

y x

p

    

      


 

    

     

 


 
       
  
 
  

         

  



          (3.6) 

 

where  ,p    denotes the prior on the hyperparameters. A reasonable choice is  |p   

const., and      1 /2 11
exp

2
p A       , which leads to:  

 

       
2

1 /2 1 11 1 1 1 1
2 2

                                                , , , , , | ,

( ) ( ) 1
exp

22 2

n T T
n it it t i t t t tnT i t t

p Y X

y x
tr A



    

      


 

         

 
       

     
 
  

    (3.7) 
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where   
1

n
i ii

A A    


    .  

In order to proceed with the Bayesian inference, we also use the Gibbs Sampling 

algorithm. In this scenario, the implementation of Gibbs sampling is quite straightforward 

since we can derive analytically the following marginal posteriors for the parameters we are 

interested in. 

 

        1 12| , , , , , , ~ , ,  where k nY X N X X X X X Y I        
         (3.8) 

 
      2

2
| , , , , ~n n

nT

Y X I Y X I   
    



       
        (3.9) 

  1 1
1

| , , , , , , , ~ | , , , ~ ,  
n

G ii
Y X Y X N n n         


          (3.10) 

      1 /2 11
| , , , , , , exp

2

n
p Y X tr A


    

    
       

       (3.11) 

   12 2 1ˆ| , , , , , ~ ,  i G iY X N      
         

  (3.12) 

where    12 1 2 1
î ie             , i i ie y X   , for each 1,...,i n . 

     12 2 2 2ˆ| , , , , , , , , ~ ,  2t G t GY X t N I           
         

  (3.13) 

where     12 2 2 2
1 1

ˆ 2t G t t tI e      
         , t t te y X   , for each 

1,...,t T . 

Using a Gibbs sampler, we can draw observations from the marginal posteriors from Eq. 

(3.8) to Eq.(3.13) with data augmentation. Draws from these conditional posteriors will 

eventually converge to the joint posterior in Eq.(3.7). Since the conditional posterior 

distribution of β follows the multivariate normal distribution displayed in Eq.(3.8), it will be 

straightforward to sample from it. To draw samples from the conditional posterior distribution 

function for the unobserved variance of the measurement error σ term, we can firstly draw 

samples directly from that of     2/Y X Y X        , which is shown in Eq.(3.9) 

to follow a chi-squared distribution with degree of freedom nT, then assign the values of 

    /Y X Y X Chi rnd        to 2 , where Chi rnd is the generated random 

variable that follows 2
nT  in the first step.  
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For the mean parameter  , sampling is also straightforward since its conditional posterior 

follows a multivariate normal distribution; the variance matrix Σ  follows an inverted 

Wishart distribution and can thus be drawn directly.  

For the unknown common factors iγ , and the corresponding factor loadings tφ , we can 

draw directly from multivariate normal distribution following Eq.(3.12) and Eq.(3.13)

respectively.  

   Up till now, we assume the number of factors is known as G. Now, we need to find what G 

is under a Bayesian way. We consider models with G=1, 2,…,L. Suppose ( ), Gp θ Γ and 

( ), ; ,GL Y Gθ Γ  denote the prior and likelihood, respectively, of a model with G factors, where 

θ  is the vector of parameters common in all models (like β and σ) and GΓ  denotes a vector 

of parameters related to the factors and their loadings, φ and γ. The marginal likelihood is

( ) ( )( ) , ; , ,G G G GM Y L Y G p d dθ θ θ= Γ Γ Γ∫ . For models with different number of factors, say G  

and G′  we can consider the Bayes factor in favor of the first model and against the second: 

 
( ) ( )
( ) ( )

, ; , , ( )
( ), ; , ,

G G G G

GG G G

L Y G p d d M Y
BF

M YL Y G p d d

θ θ θ

θ θ θ ′′ ′ ′

Γ Γ Γ
= =

′Γ Γ Γ
∫
∫

  (3.14) 

   Essentially, what is required is the ability to generate MCMC draws from models with 

different numbers of factors and record the draws { }( ) , 1,...,s
G s Sθ = , for 1, 2,...G =  Then from 

the candidate’s formula introduced by Chib (1995) , we have ( )
( )

| ,
( )

| ,G

Y G
M Y

p Y G
θ
θ

=
P

, where the 

numerator ( ) ( ) ( )| , , ; , ,G G GY G L Y G p dθ θ θ= Γ Γ Γ∫P , and the denominator 

( ) ( )| , , | ,G Gp Y G p Y G dθ θ= Γ Γ∫ , the normalized posterior in terms of the structural parameters, 

θ, only. Given a point θ̂ , for example, the marginal likelihood can be estimated as: 

( ) ( )
( )

ˆ ˆ; ,
( )

ˆ | ,
G

L Y G p
M Y

p Y G

θ θ

θ
= , 

where the denominator is estimated using the Laplace approximation: 

( ) ( )
1/2/ 2ˆ | , 2 Kp Y Gθ π
−−= S , 
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where ( )( )1 ( ) ( )
1

ˆ ˆS s s
s

S θ θ θ θ−
=

′= − −∑S , and K is the dimensionality of θ .  

   Computation of the marginal likelihood requires the computation of the integral in the 

numerator ( )| ,Y GθP with respect to ϕ  and γ . As this is not available analytically, we 

adopt the following approach.  

   

 ( ) ( ) ( ) ( ) ( )
( ) ( )

, ; , ,
| , , ; , , G G

G G G G G
G

L Y G p
Y G L Y G p d q d

q
θ θ

θ θ θ
Γ Γ

= Γ Γ Γ = Γ Γ
Γ∫ ∫P   (3.15)       

where ( )Gq Γ  is a convenient importance sampling density. We factor the importance density 

as ( ) ( ) ( )1 1

T n
G t t i it i

q q qφ γφ γ
= =

Γ =∏ ∏ , where tqφ  and iqγ  are univariate densities. The densities 

are chosen to be univariate Student-t with 5 degrees of freedom, with parameters matched to 

the posterior mean and standard deviation of MCMC draws for φ and γ respectively. Then the 

integral in (2) is estimated using standard importance sampling. The standard deviations are 

multiplied by constants hφ  and hγ , which are selected so that the importance weights are as 

close to uniformity as possible. Specifically we try 100 random pairs in the interval 0.1 to 10 

and select the values of h for which the Kolmogorov-Smirnov test is lowest. Of course, 

acceptance of the uniformity is not possible but the weights so selected are not concentrated 

around zero with a few outliers. Finally we truncate the weights to their 99.5% confidence 

interval but in very few instances this has been found necessary as outlying values are only 

rarely observed. There is some evidence that changing also the degrees of freedom of the 

Student-t provides some improvement but we did not pursue this further as the final results for 

Bayes factors were not found to differ significantly. 

Given marginal likelihoods ( )gM Y , 1,...,g G= , posterior model probabilities can be estimated 

as 

 ( )
( )1

( ) ,  1,...,g
g G

gg

M Y
p Y g G

M Y
=

= =
∑

  (3.16) 

The posterior model probabilities summarize the evidence in favor of a model with a given 

number of factors. 
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4. Monte Carlo Simulations  

To illustrate the model and inspect the finite sample performance of the new estimators 

using the Bayesian approach with nonparametric individual effects specification and with the 

factor model setting (BE1 and BE2 henceforth), Monte Carlo experiments are carried out in 

this section. The performance of the Bayesian estimator is compared with the parametric 

time-variant estimator BC, the estimators proposed by (Cornwell et al., 1990)- within 

estimator (CSSW hereafter) and GLS estimator (CSSG henceforth)- and the (Kneip et al., 

2012) estimator utilizing the nonparametric regression techniques (KSS henceforward) based 

on a factor analysis.  

   Consider the panel data model(2.2), which can be written in the sum form: 

1

p
k

it k it it it
k

Y X v 


   . Samples of size n = 50, 100,200 with T = 20, 50 in a model with p 

= 2 regressors are simulated. In each sample of the Monte Carlo experiments, the regressors

itX are randomly drawn from a standard multivariate normal distribution (0, )pN I . The 

disturbance term 2σ is randomly drawn from the 2(0,0.1 )IIDN .  

The time-varying individual effects are generated by the following DGPs respectively, 

which includes as many different types of parametric forms such as quadratic function of time 

trend, random walk, the functional form capturing significant temporal variations.  

DGP1: 2
0 1 2( / ) ( / )it i i it T t Tγ θ θ θ= + +  

DGP2: it i trγ φ=  

DGP3: ( ) ( )1 2/ cos 4 / / sin 4 /it i it T t T t T t Tγ ν π ν π= +  

DGP4: ( ) ( )2
0 1 2 1 2( / ) ( / ) / cos 4 / / sin 4 /it i i i i t i it T t T r t T t T t T t Tγ θ θ θ φ ν π ν π= + + + + +  

where ( 0,1,2)ij jθ = is drawn i.i.d. from a standard normal distribution N(0,1), 

. . . (0,1)i i i d Nφ  , 1 , . . . (0,1)t t t tr r i i d Nδ δ+ = + 
, ( 1, 2) . . . (0,1)ij j i i d Nν =  . 

DGP1 specifies a time-varying effect based on a second-order polynomial of the time 

trend, which is used to model smooth change in efficiency levels; DGP2 utilizes the effect as a 
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random walk process; DGP3 is considered as the case that large temporal variations are 

modeled; DGP 4 is the general case that integrate all the scenarios in DGP1 through DGP3 in 

order to provide the evidence that the Bayesian Estimator is of expansive use in different types 

of parametric forms.  

In this paper, Gibbs sampling has been implemented using 55,000 iterations with the first 

5,000 samples ignored, the commonly called burn-in periods. The reason for discarding the 

first several periods is that it may take a while to reach the stationary distribution of the 

Markov chain, which is the desired joint distribution. Then we consider only every other 10th 

draw to mitigate the impact of autocorrelation since successive samples from a Markov chain 

tend to have correlations to some extent and thus are not independent from each other. With 

regard to the selection of the number of factors, Gibbs samplers for all DGPs rely on MCMC 

simulation from models with G ranging from one to eight. The true number of factors is 3,2,1, and 

6 for the four DGPs respectively. 

The simulation results for all the DGPs are displayed as below in Table 1 through Table 4. 

The BC time-varying estimator along with CSSW, CSSG, and KSS estimators are displayed 

for a comparison with the Bayesian Estimator proposed in this paper. For the coefficient 

parameter β in the model, both the estimate and the standard deviation results are presented at 

the upper panel of every table; for the individual effects γit, MSE results are displayed at the 

lower panel of each table. The normalized MSE formula of the individual effects γit is 

calculated in (4.1). 

 



2
1 1

2
1 1

( )
( , )

n T
it iti t

it it n T
iti t

R
γ γ

γ γ
γ

= =

= =

−
= ∑ ∑

∑ ∑
 (4.1) 
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Table 1 : Monte Carlo Simulations for DGP1 

 

 

 

DGP1 is consistent with the assumptions for the time-varying effects in the CSS model. 

Hence, it is expected that the CSSW and CSSG estimators will have better performance 

compared with other estimators. The conjecture turns out to be true and is proved in Table 1. It 

is also shown in Table 1 that the performances of the Bayesian estimators are comparable to 

those of the CSSW, CSSG and KSS estimators in terms of the estimation on individual effects. 

Under the cases of n = 50, T = 50 and of n = 100, T = 50, the Bayesian estimators provides 

more accurate estimation on the individual effects than the KSS estimator. This implies that 

the performance of the Bayesian estimators is quite efficient in estimating time-varying 

effects of the smoothing-curve forms, like the second-order polynomials. It is not surprising 

that the mean squared errors of the Bayesian estimators are consistently much lower than 

those of the BC estimator for all sample sizes.  
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Table 2: Monte Carlo Simulations for DGP 2 

 

    

 

DGP2 considers the case where the individual effects are generated by a random walk and can 

take an arbitrary functional form. Therefore, the CSSW and CSSG estimators, which rely on 

the assumption that the individual effects are the quadratic function of the time trend,  would 

have worse performance than in DGP1 due to misspecification. The BC estimator is also 

expected to perform poorly on the estimation of the individual effects. However, the Bayesian 

and KSS estimators impose no functional forms on the temporal pattern of the individual 

effects, and thus should be able to approximate arbitrary forms of time-varying effects. The 

results in Table 2 have confirmed our expectation. It is shown that the Bayesian estimators 

dominantly outperforms the estimators which rely on functional form assumptions and also 

have better estimation performance in terms of MSE of individual effects than the KSS 

estimators do in any size of panel. 

DGP3 is considered to characterize the significant time variations in individual effects. As 
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we can see from Table 3, The Bayesian estimators have comparable performance to the KSS 

estimator and outperforms it in the cases large panels such as when n = 100 and 200. Other 

estimators, whose effects rely on parametric assumptions of simple functional forms, are to a 

great extent dominated by the Bayesian estimators.  

 

Table 3: Monte Carlo Simulations for DGP3 

 

 

DGP 4 can be considered a mixed scenario of those from the first three DGPs. It is shown in 

Table 4 that the Bayesian estimators dominantly outperform the BC, CSSW, and CSSG 

estimators in terms of the MSE of the individual effects and are comparable to KSS. 

Through all the DGPs, although the performance of the slope parameter estimation is 

reasonably well for all the estimators, those estimators based on simple parametric assumptions 

on the individual effects are not sufficient to provide sound estimation on the effects. This is 

undesirable since the individual effects correspond to the technical efficiencies in stochastic 

frontier analysis and should be drawn on no less attention than the slope parameters. Hence, the 

Bayesian estimators are excellent candidates among all the estimators in modeling the 

production or cost frontier.  
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Table 4: Monte Carlo Simulations for DGP4 

 

 

5. Empirical Application: Efficiency Analysis of U.S. Banking Industry. 

5.1 Empirical Models: 

In this section, the Bayesian approach suggested in this paper will be applied to illustrate 

the temporal change in the efficiency levels of 40 of the top 50 banks in the U.S. ranked by 

their book value of assets. We consider only 40 of these banks due to missing observations and 

other data anomalies. The empirical model is borrowed from Inanoglu et al. (2012), where a 

suite of econometric models, including time-invariant panel data models, time-variant models 

as well as the quantile regression methods, are utilized to examine issues of “too big to fail” in 

the banking industry.. In this paper, we will only compare results across different time-varying 

stochastic frontier panel estimators such as the CSS Within and GLS estimators, the BC 

estimator and the KSS estimator and assess the comparability of inferences among them. The 

estimators we utilize are based on different assumptions on the functional form of the time 
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varying effects and provide various treatments for the unobserved heterogeneity, but they are 

all based on Eq.(2.1), which characterizes a single output with panel data assuming 

unobserved individual effects. Here ity  is the response variable (e.g. some measure of bank 

output like loans), itη  represents a bank specific effect, itx  is a vector of exogenous 

variables and itν  is the error term. We will estimate second order approximations in logs-the 

translog specification- to a multi-output/multi-input distance function, see Caves et al. (1982). 

Let the m outputs be exp( )it itY x=  and the n inputs exp( )is isX x= . Then express the m-output, 

n-input deterministic distance function ( , )OD Y X  as 

 1

1

( , ) 1

j

k

m

it
j

O n

it
k

Y
D Y X

X

γ

δ

=

=

= ≤
∏

∏
 (5.1) 

The output-distance function ( , )OD Y X  is non-decreasing, homogeneous, and convex in 

Y and non-increasing and quasi-convex in X. After taking logs and rearranging terms we 

have:  

 *
1,

2 1
, 1,..., ; 1,...,

m n

it it j jit k kit it
j k

y y x v i N t Tη γ δ
= =

− = + + + = =∑ ∑  (5.2) 

where *
, 2,..., 1ln( / )jit j m jit ity Y Y= =  and the normalization of homogeneity in outputs is applied 

to satisfy 
1

1
m

j
j
γ

=

=∑ . 

We specify the distance function as translog, consistent with the recommendations of Fare 

et al. (2013).  Their functional equation methods yield the translog specification in the case of 

the Shephard distance function that we utilize below.  Using this flexible parametric 

functional form we can also test if the data are consistent with the curvature properties 

required of the distance function.  Such theoretical underpinnings and empirical testing 

options are not available for many of the more recent highly parameterized nonparametric 

specifications utilizing, for example local linear or quadratic approximations, and for that 

reason we do not pursue such options in our banking productivity illustration.   
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With the translog technology applied, the distance function will take the following form in 

Eq.(5.3). 

 

* * *
1

2 2 2 1 1 1

*

2 1

1/ 2 1/ 2

,    1,..., ; 1,...,

m m m n n n

it it j jit jl jit lit k kit kp kit pit
j j l k k p

m n

jk jit kit it
j k

y y y y x x x

y x v i N t T

η γ γ δ δ

θ

= = = = = =

= =

− = + + + +

+ + = =

∑ ∑∑ ∑ ∑∑

∑∑
 (5.3) 

If we denote * * * *
( 1) ( ( 1)/2) (( 1) /2) ( 1) )[ , , , , ]NT n NT m NT n n NT m m NT m nX x y xx y y xy× × − × × + × − × × − ×= , model 

(5.3) can be written in simplicity to the form in Eq.(2.1).  

Elasticities of the distance function with respect to input and output variables (O’Donnell 

and Coelli, 2005) are expressed as  

 *

1 2
,   1, 2,...,

n m

p p kp k pj j
k j

s x y p nδ δ θ
= =

= + + =∑ ∑  (5.4) 

  *

2 1
,    2,...,

m n

j j jl j kj k
l k

r y x j mγ γ θ
= =

= + + =∑ ∑  (5.5) 

The individual effects are transformed into relative efficiency levels using the standard 

order statistics argument given in Schmidt and Sickles (1984) as  

 1,...exp{ ( ) max ( )}it i i n iTE v t v t== −  (5.6) 

For the BC estimator, technical efficiency levels can differ but parsimony is achieved by 

assuming that all firms have the same temporal pattern.  The temporal pattern is specified as 

 {exp[ ( )]}it iTE t Tς η= − −  (5.7) 

where iη  are independent random effects and ς describes the temporal change pattern.  

   Clearly the levels of efficiency can vary substantially for the methods that use the order 

statistics (the firm with the largest effect) to benchmark the most efficient firm and thus the 

relative efficiencies of the remaining firms. Typically, this impact is mitigated by data 

trimming but with only 40 firms in our study we decided to avoid doing so in presenting the 

results below. The BC estimator has no such potential drawback. We will consider such 

trimming approaches as we examine our models and results more fully. 
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5.2 Data  

The dataset analyzed in this paper is a balanced panel of 40 out of the top 50 U. S. 

commercial banks based on the yearly data of their Book Value of Assets from 1990 through 

2009. The panel size is thus 40 by 20. Missing observations and data anomalies reduced the 

sample from 50 to 40 firms. The data is merged on a pro-forma basis wherein the 

non-surviving bank’s data is represented as part of the surviving bank going back in time.  

The three output and six input variables used to estimate the translog output orientated 

distance function are: Real Estate Loans (“REL”), Commercial and Industrial Loans (“CIL”), 

Consumer Loans (“CL”), Premises & Fixed Assets (“PFA”) , Number of Employees (“NOE”), 

Purchased Funds (“PF”), Savings Accounts (“SA”), Certificates of Deposit (“CD”) and 

Demand Deposits (“DD”). Additionally, three types of risk proxies are considered: Credit 

Risk (“CR”), which is approximated by the Gross Charge-off Ratio, Liquidity Risk (“LR”), 

proxied by Liquidity Ratio, and Market Risk (“MR”), proxied by standard deviation of 

Trading Returns. 

5.3 Empirical Results 

The estimation results of the first-order and second-order terms are displayed in Table 6 in 

Appendix B. Since our dataset is geometric mean corrected (each of the data points have been 

divided by their geometric sample mean), the second-order term in the elasticities expressed in 

Eq.(5.4) and Eq.(5.5) will diminish to zero when evaluated at the geometric mean of the 

sample. The elasticities are displayed in Table 5. In order to select the number of factors for 

KSS and BE2, we set the limit up to 5 and both of the models favor a two-factors. From Table 

5, we can see the elasticity in the input variable Fixed Assets is varying from -0.0448 (KSS) to 

-0.1267(BC) across different time-varying estimators; the elasticity estimate in Number of 

Employees is varying from -0.0666 (BE2) to -0.2750 (CSSW); that in Purchase Fund is from 

-0.0570(BE1) to -0.1387(BE2); the elasticity in Saving Account varies from -0.1026(CSSW) 

to -0.3058(BC); the elasticity in Certificate of Deposit is from -0.1526(KSS) to -0.2938 (BC); 

and that in Demand Deposit is from -0.0055(CSSW) to -0.0636 (BE2). As it is shown, the 

results are on the same order in magnitudes and signs of the elasticity estimates across 
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different models, except that for Demand Deposit, where CSSW gives a significantly lower 

estimate than all the other estimators. The KSS estimator suggests a slightly lower 

returns-to-scale estimate as shown in the second but last row in Table 5 since KSS tends to 

give lower estimates on the Fixed Asset and Certificate of Deposit input elasticities than other 

models, though the estimates are in the same order. In addition, all the estimators suggest 

decreasing returns to scale except BC. However, the returns-to-scale estimate suggested by 

BC is 1.0165, which is not significantly different from 1. Alternatively, we can say that there 

is no evidence of increasing returns to scales based on the estimation results. For the 

elasticity estimates in output variables, we notice that the estimates are also similar across 

estimators.  

 

Table 5: Estimation Results 
(Evaluated at Sample Mean) 

 

 

 

Although the Bayesian estimators proposed in this paper has produced similar estimates 

for the slopes elasticities, they have variation in the estimation of the temporal pattern of the 

individual effects as it is displayed in Figure 1. The BC estimator provides higher efficiency 

estimates through the time period, while all the other estimators tend to give estimates on 

efficiencies of similar magnitude. In addition, the BC estimator suggests a declining pattern in 

the average of the technical efficiency levels. This is probably due to the substantial 

downturns in the economy and the meltdowns of financial institutions during the recent period 

of the Great Recession. The average of the technical efficiency levels estimated by other 
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time-varying estimators has displayed a turning point in a certain period. Generally, the 

estimators considered here have indicated a consensus decrease in efficiency of the largest 

banks over the last two decade.  

 

Figure 1: Temporal Pattern of Changes in Average Efficiencies for all Estimators 

 

   As we can see from the last row in Table 5 and in Figure 1, the scale of the average technical 

efficiency levels in the largest U.S. banks suggested by BC is 0.7576, higher than those by the 

CSSW, CSSG, the KSS and the Bayesian estimators. It ranges from around 0.7267 to 0.7866. 

The temporal pattern of BC is linearly decreasing, which is consistent with its assumption on 

the form of the technical efficiencies. The patterns estimated from the CSSW and CSSG 

estimators have both displayed a turning point at around the year 2005. The KSS estimator 

provides a similar pattern as CSSW and CSSG but a mild decreasing trend of the technical 

efficiencies over the recent period. Turning our attention to the estimated temporal pattern of 

the technical efficiencies using the Bayesian estimator, we notice that the BE1 and BE2 

models display similar trends but the efficiency levels suggested by BE2 are consistently 

higher than those by BE1. They both display an initial slowly increasing pattern in the 1990s, 

and a sharp kink in the early 2000. After that, the curve is decreasing at a decreasing rate. The 

increasing trend in efficiency levels at the beginning of 1990s is probably because of the 
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increased competitive pressure in financial industry due to the deregulations since the 1980s. 

The decreasing trend in efficiency levels started before the Great Recession perhaps because 

the financial institutions were taking on more risky activities and less focused on their 

traditional roles as financial intermediaries when the global pool of fixed-income securities 

increased substantially. 

6. Conclusions 

   This paper has proposed a Bayesian approach to treat time-varying heterogeneity in a panel 

data model setting. We consider two models: one with nonparametric time effects and the 

other whose effects are driven by some unknown common factors. In both of the models, we 

do not impose any parametric assumptions of the individual effects and that we utilize the 

Gibbs Sampling method to implement the Bayesian inferences.  

   The Monte Carlo Simulation experiments show that the new Bayesian estimators have 

displayed consistently superior performance under various data generating processes. On the 

other hand, the parametric estimators based on some simple functional form assumption on 

the effects, though allowing for the temporal variations, have the tendency of misspecification 

on the temporal pattern of the individual effects. Hence, their finite sample performance has 

been dominated by the Bayesian estimators.  

   The new Bayesian estimators are applied in analyzing the temporal pattern of the technical 

efficiencies of the largest 40 U.S. banks over the last two decades (through the 1990 to 2009). 

It is discovered that the largest banks have experienced a decrease in technical efficiency since 

early 2000, and a slight recovery after 2008. This can be explained by their tendency to taking 

on more risky activities at the early 2000s and restrain these risky activities somehow after the 

Great Recession.  

   There are several paths for continuing research. An extension of this model is on the prior 

assumption of the slope parameters; we can consider the restricted region where the slope 

parameters satisfy reasonable curvature properties under a specific functional form. For 

example, monotonicity and convexity can be imposed when the translog distance function is 

specified; thus the assumption on the prior of the slope parameters is reasonable if it restricts 
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the parameter values to a permissible set. The advantage of applying Bayesian method to 

impose the monotonicity and curvature properties has been elaborated in O’Donnell and 

Coelli (2005). Our model can also be extended to a panel data discrete choice model, with the 

effects term modeling the unknown individual heterogeneity.  
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Appendix A: 

1. Detailed Derivation of the conditional posterior distribution of | , , , ,i Y X    . 
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2. Derivations of the posterior distribution of the smoothing parameter ω. 

If the smoothing parameter is assumed to follow its the prior distribution: 2
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The joint prior will take the form below: 
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Therefore, the conditional posterior distribution of ω can be derived through the following.
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Appendix B: 

Table 6: The Estimation for the Slope Parameters 
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